
« ∑—πµ ®ÿÃ“œ 2553;33:229-48
CU Dent J. 2010;33:229-48

Original Article

∫ ∑ «‘ ∑ ¬ “ ° “ √

Dental pulp responses to pulp capping
materials and bioactive molecules
Kajohnkiart Janebodin D.D.S.1

Orapin V. Horst D.D.S., M.S., M.S.D., Ph.D.2

Thanaphum Osathanon D.D.S., Ph.D.3

1Department of Anatomy, Faculty of Dentistry, Mahidol University
2Department of Dental Public Health Sciences, School of Dentistry, University of Washington
3Department of Anatomy, Faculty of Dentistry, Chulalongkorn University

Abstracts

An ideal treatment outcome of pulpal exposure during restorative procedures is to regain the
primary structure of tubular dentin as well as maintain the vitality and healthiness of the dental
pulp. Presumably this gold standard result requires pulp capping materials with antibacterial,
anti-inflammatory, and dentin-pulp tissue regenerative properties. Various capping materials have
been used in dentistry but none have been able to predictably induce the regeneration of underlying
tubular dentin. Recently, potentially applicable tissue engineering strategies using scaffolds containing
growth factors were introduced with promising results for dentin regeneration in animals, and similar
approaches have been shown to be successful in non-dental clinical problems such as bone regeneration.
This article presents a review of dental pulp responses to commercially available pulp capping
materials and discusses candidate bioactive molecules investigated in animals for dentin-pulp
regeneration.

(CU Dent J. 2010;33:229-48)
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Introduction

Dental pulp is a loose connective tissue that
derives from cranial neural crest. The dental pulp
resides in the innermost part of the tooth, called the
pulp cavity. This unique tissue consists of a heterogenous
cell population including fibroblasts, odontoblasts,
residential immunocompetent cells, undifferentiated
mesenchymal cells, and cellular components from
sensory nerves and blood vessels including pericytes,
endothelial cells, and vascular smooth muscle cells.1,2

When injuries invade close enough to affect
the pulp cavity, the dental pulp forms reparative
dentin. This response is generated by odontoblasts or
odontoblast-like cells, depending on environmental
factors, nature and severity of injuries.3 Newly
differentiated odontoblasts may originate from various
cell types in the pulp such as undifferentiated
mesenchymal cells, endothelial cells and/or pericytes
which migrate to the injured site from the central
regions of pulp tissues.4-7 A subpopulation of human
dental pulp cells, termed dental pulp stem cells (DPSCs),
has been characterized in vivo to present the ability for
self-renewal and odontoblastic differentiation.8,9 This
cell population has stem cell-like properties, and is
claimed to be a major source of odontoblast progenitor
cells and play an important role in dentin/pulp repair.

Applications of pulp capping materials are the
standard treatment for accidentally injured pulp with
no other symptoms. Clinical guideline indication and
objective of various pulp therapy techniques for both
primary and young permanent teeth was published by
American Academy of Pediatric Dentistry.10 An ideal
treatment outcome of pulpal exposure during restorative
procedures is to regain the primary structure of tubular
dentin as well as maintain the vitality and healthiness
of the dental pulp. To enhance this repair process,
ideally, the capping agents should have a capacity to
induce the dentinogenic potential of DPSCs. In this
review, the responses of DPSCs and other pulp cells to

pulp capping materials, and bioactive molecules are
discussed.

Dental pulp responses to pulp capping materials
Calcium hydroxide

Calcium hydroxide has been used as a  pulp
capping agent for decades. The alkaline environment
created by calcium hydroxide was suggested to be a
major mechanism for the induction of dentin repair.
Although this alkali pH damages primary odontoblasts
and induces local tissue necrosis, it subsequently promotes
the odontoblastic differentiation and formation of
calcified dentin bridge.11-13 From such relatively reliable
mechanism to induce dentin regeneration, calcium
hydroxide has been widely used in the clinic as a pulp
capping agent with successful induction of reparative
dentin. However, several disadvantages were reported.
Firstly, calcium hydroxide produces inflammation within
the underlying pulp, which can last for up to 3 months
in human teeth.14,15 Secondly, the tissue responses to
calcium hydroxide are not always predictable.15 Lastly,
the reparative dentin formed beneath calcium hydroxide
in monkey teeth and ex vivo human teeth model is
irregular and exhibits tunnel defect due to multiple
tissue inclusions in the dentin bridge.16-18 This tunnel
defect may increase permeability of the dentin bridge
and allow bacterial invasion through the dentin bridge.
However, there is currently no direct evidence available
to support the clinical relevance of tunnel defects.

Molecular mechanisms of calcium hydroxide:
Though, several publications indicated that calcium
hydroxide had an antimicrobial effect that may prevent
pulpal infection when used for pulp capping treat-
ment.19-21 In vitro studies showed that calcium
hydroxide reduced viability of odontoblast-like cells,22,23

which may result from strong alkalinity of material.
Several hypotheses have been proposed as dentin/pulp
repair mechanism by calcium hydroxide. First, calcium
hydroxide may promote dentin/pulp repair by inducing
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expression of bioactive molecules that significantly
involve in dentin formation. Yasuda et al. showed that
calcium hydroxide induced mRNA expression of bone
morphogenic protein-2 (BMP-2) in rat dental pulp
cells.23 BMP-2 may further regulate calcified matrix
formation and result in dentin bridging. Moreover, the
mechanism of calcium hydroxide promoting dentin
repair may involve in the regulation of Notch signaling.
The study in rat molar showed that Notch 1 was
observed in subodontoblastic zone beneath lesions
treated with calcium hydroxide, where as Notch 2
expressed in coronal pulp tissues. Notch 1 and 3 were
detected in perivascular cells.24 The specific localization
of Notch signal expression after treating with calcium
hydroxide suggests that Notch signaling may control
dental pulp cell fate in response to calcium hydroxide
treatment, which may further turn on different differ-
entiation pathway and promote dentin regeneration.
Second, calcium hydroxide may promote dentin/pulp
repair by inducing bioactive molecules release from
dentin matrix. In this regard, calcium hydroxide
induced releasing of adrenomedullin and transforming
growth factor-beta (TGF-β) from human dentin
matrix.25,26 Both TGF-β and adrenomedullin are
pluripotent growth factors,26 which possibly involve in
the dentin repair mechanism. Moreover, Graham et al.
reported that bioactive molecules releasing from
calcium hydroxide treated dentin matrix enhanced
expression of TGF-β mRNA in mouse odontoblast
culture,25 implying the role of matrix dissolution in
dentin repair. Third, calcium ions release from calcium
hydroxide may act as signaling molecules to promote
dentin/pulp repair. Upon incubating calcium hydroxide
in culture medium, the release of calcium ions was
significantly increased.23 Mizuno and Bansai showed
that calcium ions, possible active molecules from
calcium hydroxide, enhanced fibronectin expression,
which was shown to induce differentiation of human
dental pulp cells.27 Moreover, calcium ions induced
osteopontin (OPN) and BMP-2 mRNA expressions in

human dental pulp cells.28 Together these data suggest
that calcium hydroxide, calcium hydroxide solubilized
bioactive molecules from dentin matrix, and calcium
ions play significant roles in dentin repair by inducing
expressions of gene regulating mineralized tissue
formation.

Mineral trioxide aggregate (MTA)

Recently, MTA has been introduced as an alter-
native pulp capping material. MTA is a non-toxic
material and hypothesized to stimulate reparative
dentin formation by a normal defensive mechanism of
an early pulpal wound healing.29 Nair et al. reported
that exposed human pulp treated with MTA exhibited
minimal inflammation at early healing stage and
reparative dentin with evidences of odontoblast-like
cell lining was observed at 1-3 months.15 In contrast
to calcium hydroxide, no necrotic tissue was found
underneath MTA.15,30 Dentin bridge formation was
significantly thicker in MTA treated exposed pulp than
those treated with calcium hydroxide in canine tooth
model (Fig. 1; çReprinted from Journal of Endodontics,
Vol. 34, Min K, Park H, Lee S, et al. Effect of mineral
trioxide aggregate on dentin bridge formation and
expression of dentin sialoprotein and heme oxygenase-1
in human dental pulp, pages 666-70, Copyright @ 2008,
with permission from Elsevier.é).31 Consistent with these
observations, Briso et al. showed that MTA pulp
capping in canine teeth has higher success rate to
promote dentin bridge formation, lower level of tissue
necrosis and infection when compared to calcium
hydroxide.32 Chronic inflammation, macrophage and
giant cells associated with capping materials were
presented in great extent in calcium hydroxide treated
pulp but rarely observed in MTA treated human pulp.33

Conversely, Iwamoto et al. reported no significant
difference in inflammatory cell response, dentin
bridge formation and pulp vitality between MTA
and calcium hydroxide treated human pulp.34 In
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human immature teeth, no significant difference was
observed between MTA and calcium hydroxide when
used for direct pulp capping, although, the authors
suggested superior performance of MTA compared
to calcium hydroxide.35 Together, the accumulating

data suggest the promising potential use of MTA in
direct pulp exposure, and possibly result in better clinical
outcome. Although, the direct clinical evidence for the
superiority of MTA pulp capping has not yet been well
established.

Figure 1. Human pulp capped with MTA (A and B) and CH (C and D). (A) Hematoxylin-eosin; original
magnification, X40: hard tissue formation at the pulp exposure site. (B) Hematoxylin-eosin; original
magnification, X20: an example of an excellent dentin bridge incorporating pulp stones (w). (C)
Hematoxylin-eosin; original magnification, X40: dentin bridge incorporating dentin chips (*). (D)
Hematoxylin-eosin; original magnification, X20: pulpal exposure led to a proliferative response similar
to that of a çpulp polyp.é The hard tissue formation started at the borders of the polyp. (D) Dentin, (P)
pulp; (DB) dentin bridge, (C) calcium hydroxide, (M) MTA. çReprinted from Journal of Endodontics,
Vol. 34, Min K, Park H, Lee S, et al. Effect of mineral trioxide aggregate on dentin bridge formation and
expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp, pages 666-70, Copyright
@ 2008, with permission from Elsevier.é
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Molecular mechanism of MTA: Upon treating
exposed rat pulp with MTA, cell proliferation was noted
in the pulp regenerative area and around blood
vessels.36 OPN, protein involved in mineralization
process, was observed at the interface between very
thin necrotic layer and the underlying pulp tissue.36

In addition, dentin sialoprotein (DSP), and heme
oxygenase-1, protein involved in cellular regulatory
and protective mechanism, were expressed in greater
extent in odontoblast-like cells and pulp fibroblasts
beneath the dentin bridge of human dental pulp.31

Morphological evaluation using transmission electron
microscope revealed the homogeneous organized
crystalline structure at the pulpal front of MTA.
Crystalline structure was noted at apical pole and
cytoplasmic process of pulp cell. Further, dense
collagen fibers with predentin-like pattern were noted
between crystalline-like zone and columnar cell layer.37

Reparative dentin was irregular and exhibited small
tubular-like structure.16

MTA promoted mineralization in rat dental pulp
cells in vitro and enhanced expression of BMP-2.23

Moreover, MTA reduced chemokine ligand 5 (CCL5),
interferon-gamma (IFN-γ), interleukin-1 alpha (IL-1α)
mRNA expressions in mouse dental pulp tissues in
vivo, suggesting the regulatory role in inflammation.38

Interestingly, MTA-based cement was also shown to
have an antimicrobial activity39,40, possibly due to the
high alkali pH.41

Huang et al. reported that MTA induced ERKs
activity, which decreased in dose and time-dependent
manner in human osteoblast cells.42 The ERK/MAPK
pathway was shown to be involved in human dental
pulp cell proliferation and differentiation.43,44 Similar
to calcium hydroxide, after dentin matrix was exposed
to MTA, TGF-β1 and adrenomodullin were released.
TGF-β1 provides anti-inflammatory signals45 and
promotes cell proliferation and differentiation46 while
adrenomodullin acts as a vasodilator and increases

survival of cells from oxidative stress and hypoxic
injury.47

Taken together, these data imply that the mechanism
of MTA promoting dentin repair may occur through
growth factor released from the dentin matrix,
antibacterial effect, anti-inflammatory property, and
induction of morphogen expression as well as signaling
pathway associated with dental pulp cell differentiation.

Portland cement (PC)

PC was non-toxic and biocompatible.48 It was
able to induce reparative dentin formation in short-term
evaluation. After pulp capping in human teeth with
PC for 1 day, inflammation and disarrangement of
odontoblasts were observed in the underlying pulp
tissue. Dentin bridge formation was noted at material-
pulp tissue interface around 14-21 days.49

PC slightly decreased human dental pulp cell
viability at early time point.50 However, these cells
were able to attach, spread and form cytoplasmic
extension on the PC.48 Cells also increased expressions
of inducible nitric oxide synthases (iNOS), heme
oxygenase-1 (HO-1) and osteonectin when exposed
to PC.48,50 PC had comparable antimicrobial activity
to MTA-based cement.39,40 Even though, there were
only few publications studying PC for pulp capping
treatment, the results were intriguing and promising
for the use of PC in pulp therapy.

Dentin adhesive system

During the last decade, several types of dentin
adhesive resin have been studied for pulp capping
treatment. Human pulp tissues were found congested
with dilated blood vessels and inflammation when
exposed to dentin adhesive resin as pulp capping
materials.51-54 Recruitment of macrophages and giant
cells was observed at the pulp exposure site and also
associated with resinous materials.53,54,55 Importantly,
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dentin bridge formation was significantly less than those
treated with calcium hydroxide in both human and
canine teeth (Fig. 2; çReprinted from Dental Materials,
Vol 21(9), Accorinte M, Loguercio A, Reis A, et al.

Adverse effects of human pulps after direct pulp
capping with the different components from a total-etch,
three-step adhesive system, page 599-607, Copyright @
2005, with permission from Elsevier.é).53,56-63

Figure 2. (a) Adhesive systems capping after 60 days (group 1). Observe the chronic inflammatory response
adjacent the exposure site (black arrow). Below this site, the pulp morphology is normal (blue arrow)
(HE, original magnification-25.6X). (b) Primer+composite resin after 60 days (group 2). There is a
chronic inflammatory infiltrate subjacent to the exposure site (HE, original magnification-100X). (c)
Adhesive+composite resin after 60 days (group 3). Normal pulp tissue around the exposure site.
No dentin bridge formation (HE, original magnification-25.6X). (d) Composite resin after 60 days
(group 4). Normal pulp tissue around the exposure site. No dentin bridge formation (HE, original
magnification-25.6X). (e) Calcium hydroxide after 60 days. Observe the formation of a thick dentin
bridge (black arrow) and the normal features of the tissue below it (HE, original magnification-25.6X).
çReprinted from Dental Materials, Vol 21(9), Accorinte M, Loguercio A, Reis A, et al. Adverse effects
of human pulps after direct pulp capping with the different components from a total-etch, three-step
adhesive system, page 599-607, Copyright @ 2005, with permission from Elsevier.é
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Adequate moisture control to obtain a relatively
dry field of operation is a strict requirement for the use
of adhesive resin and is a major disadvantage of using
adhesive resin for pulp capping. Severe inflammation
with chronic abscesses in coronal pulp was observed in
human teeth treated with adhesive resin without rubber
dam isolation, whereas, normal dentin bridge formation
was observed in calcium hydroxide treated group.64

Various negative effects of dentin adhesive on
dentin regeneration were reported. Exposed human
dental pulp treated with dentin adhesive system
exhibited significant disorganization of odontoblast
and predentin layers.55 Moreover, Hebling et al. reported
the death of adjacent odontoblast cells associated with
dentin adhesive capping materials.54 No evidence of
odontoblast-like cell differentiation and dentin bridge
formation were observed at 30 days after treatment.54

Fibronectin and type III collagen, proteins related to
reparative dentin, were significantly decreased in the
odontoblast layer, predentin layer and pulp tissue when
treated with dentin adhesive system.65 Lanza et al.
reported that dentin adhesive materials (Clearfill SE
bond, Clearfil Protect Bond, Adper Prompt L-Pop, Xeno
III, and Adper Single Bond) significantly reduced
cell metabolic activity using trandentinal diffusion,66

however, Demirci et al. reported no cytotoxicity of
adhesive system using the same testing model.67 This
may be due to the cell types and source of dentin slides
used in the experiment. Partially polymerized adhesive
resin resulted in apoptosis of mouse odontoblast-like
cell and cell cycle arrest.68 The apoptotic induction
occurred via cysteine protease Caspase-3 mechanism.68

Lanza et al. showed that HEMA was a major component
eluted from dentin adhesive materials, which may
responsible for the toxic effect of test materials.66

Potentially, cytotoxicity of subtances released from
dentin adhesive materials may limit their abilities to
promote dentin repair.69

However, the possible mechanisms for dentin
repair underneath the dentin adhesive pulp capping were

also discussed. Kitasako et al. reported the superior
barrier of adhesive resin system compared to calcium
hydroxide, regarding the prevention of bacterial invasion
to dental pulp following dentin bridge formation
beneath capping materials in monkey teeth.18 Although,
adhesive resin system failed to induce dentin bridging,
the local blood vessels were increased.70 This may be
due to the mechanism that adhesive resin system (Single
Bond and HEMA) induced VEGF protein expression
as observed in mouse odontoblast-like cells and
macrophages.70

Taken together, dentin adhesive resins may be
beneficial in promoting angiogenesis and preventing
bacterial invasion. However the promotion of dentin/
pulp healing is impaired when the adhesive resin is
used as pulp capping material. Therefore, the adhesive
resin may not be material of choice for pulp capping
treatment.

Dental pulp responses to bioactive molecules

The understanding of molecular mechanisms for
dentin formation leads to new strategies to treat injured
pulp. Various applications have been introduced in
order to replace the conventional pulp capping materials.
Examples of these approaches include the use of
combination of dental pulp progenitor/stem cells and a
variety of scaffolds, the use of scaffolds containing
growth factors, the use of scaffolds containing plasmid
DNA, and the combination of progenitor/stem cells
with scaffolds and growth factors. These strategies may
enhance the healing process after dental pulp injuries
by mimicking the natural dentin/pulp repair process or
resembling tooth developmental process.

The common approach for dentin/pulp repair
experiment is the use of scaffolds releasing growth
factors. Various bioactive molecules have been
anticipated to have ability to promote dentin/pulp
healing. Thorough understanding for the mechanisms
of dental pulp response to bioactive molecules is
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required to design a new clinical application using these
bioactive molecules. The current knowledge for the
use of bioactive molecules in treatment of injured
pulp is reviewed and discussed below.

Transforming growth factor-betas (TGF-ßs)
are cytokines in TGF superfamily. TGF-βs are secreted
during early tooth development by epithelial cells to
induce mesenchymal differentiation.71 In human and
rabbit mature teeth, TGF-βs are expressed and
secreted by odontoblasts.72 Zhao et al. reported that
TGF-βs are released during dentin repair and act as a
stimulating factor for dentin/pulp regenernation.73 TGF-β1
has been studied in vitro and in vivo regarding the
capacity of inducing odontoblast differentiation and
dentin bridge formation.74-77 TGF-β1 upregulated type
I collagen expression in odontoblasts. This upregulation
occurred via c-jun, a nuclear proto-oncogene, and
further regulated an activator protein-1 (AP-1).78

AP-1 is also shown as a crucial regulator of cellular
proliferation, migration, and differentiation.79 It has been
reported that AP-1 regulated the production of dentin
matrix.79

TGF-β1 also participates in the regulation of
Notch signaling.80,81 Delta/Notch signaling plays a
fundamental role in tissue fate determination during
embryonic tooth development,82 directs pulp cell
differentiation into odontoblastic lineage83 and regulates
proliferation and migration of progenitor/stem cells in
pulp of both developing and injured teeth.83 Further,
TGF-β1 controls inflammatory reactions in the human
dental pulp in response to carious bacteria by reducing
the expressions of toll-like receptor 2 and 4 and
consequent production of pro-inflammatory cytokines
through these receptors.45

Investigations of potential use of TGF-β1 for dentin
repair were reported. Collagen membrane containing
TGF-β1 significantly promoted dentin/pulp healing in
injured rat teeth.84 In addition, Zhang et al. reported
significant dentin formation in goat incisor treated with

combination of poly(lacitc-co-glycolic acid) containing
TGF-β1 and calcium phosphate cement.85 Taken
together, these results suggest the potential use of
TGF-β1 to enhance dentin/pulp repair.

Bone morphogenic proteins (BMPs) are also
members in TGF superfamily, which play critical roles
in embryonic tooth development and odontoblast
differentiation.86 BMP-2, BMP-4, and BMP-6 were
identified in human primary culture of dental pulp
cells.87 Several studies have reported the potential use
of BMPs in dentin/pulp repair. BMP-2 stimulated
odontoblastic differentiation in murine and canine pulp
cells.88-90 Moreover, transfection of BMP-2 in Stro-1
positive rat dental pulp stem cells resulted in induction
of odontoblast differentiation in vitro.91,92 Recombinant
human BMP-2, BMP-4, and BMP-7, were employed
as bioactive molecules for dental tissue engineering
in vitro and in vivo.93-99 Several studies reported
significant osteodentin formation in injured pulp when
treated with BMP-7.100-104 In contrast, da Silva et al.
reported no beneficial effect of BMP-7 as pulp capping
agent in dogs.105-106 Nakashima reported similar
effects from BMP-7, BMP-2, and BMP-4 on the
dentin/pulp repair in canine teeth with amputated
pulp.107 Due to these conflicting evidences, the
beneficial application of BMPs in dentin repair and
vital pulp treatment remains questionable. Nonetheless,
the use of high dose BMP-2 in pulp capping may
result in excessive osteodentin formation which may
lead to complete pulp canal obliteration.

Fibroblast growth factor-2 (FGF-2) is detected
in dentin matrix and released upon matrix degradation.
FGF-2 involves in enamel and dentin formations.108-110

It has been shown that FGF-2 released from biode-
gradable gelatin hydrogel induces neo-vessel formation
and regenerates bone and periodontal tissues.111-113

This protein was incorporated into the gelatin hydrogel
and placed over the exposed pulp to stimulate the
formation of reparative dentin in rat molar.114,115
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However, the formation of dentin bridge was observed
only when 0.5 mg/ml of FGF-2 was used.115 Higher
doses of FGF-2 releasing from gelatin hydrogel (1 and
5 mg/ml) resulted in scattered calcified nodules in pulp
tissue beneath the pulp exposure area.115 This result
emphasizes the importance of optimized biomolecule
doses in promotion of dentin repair.

Insulin-like growth factor-I (IGF-I) has high
sequence similarity to insulin.116 IGF-I induces
mineralization of canine dental pulp cells in vitro.117

Addition of IGF-I with heparin increases BMP-4
mRNA expression in murine dental papillae118 and
promotes odontoblast-like cell differentiation.74

Lovschall et al. reported that recombinant IGF-I
enhanced reparative dentin formation when used as pulp
capping in rat molars.116 The complete dentin bridge
was more frequently observed in the teeth treated with
recombinant human IGF-I compared to control.116

Bone Sialoprotein (BSP) is a phosphorylated
protein secreted from soluble dentin matrix. Recently,
this protein was shown to play an important role in
pulp regeneration.119 BSP has a hydroxyapatite-binding
site, which enhances initial nucleation of hydroxyapatite
crystals necessary for mineralization process. BSP is
only expressed in odontoblast cells but not in pulp
cells.120 MacDougall et al. reported that implantation
of BSP into the exposed pulp of rat molars activated
the cellular changes of pulp cells and induced homo-
geneous and well-mineralized reparative dentin.120

Matrix extracellular phosphoglycoprotein
(MEPE), another type of phosphorylated proteins, is
identified as a non-collagenous protein in human bone
and dental tissues.121 The role of MEPE in dentin
mineralization has been proposed.121 Dentonin, a
bioactive fragment of MEPE, was shown to have a
capability to enhance human DPSCs proliferation. This
ability is beneficial for dental pulp regeneration.121

However, the reparative dentin generated after treating
the injured rat teeth with dentonin was occurred

incompletely,122 suggesting that dentionin is useful for
the initial repair process in term of pulp cell proliferation
before terminal mineralization.122

Amelogenin, a main component of enamel matrix
proteins, is produced by several types of cells such as
ameloblasts, odontoblasts, and brain cells.123 The
implantation of splicing products of amelogenin
including A+4 and A-4 into the pulp resulted in
recruitment and enhancement of pulpal osteo/odonto-
blast progenitor cell proliferation.124 Amelogenin peptide
A+4 induced significant osteodentin formation, which
almost occluded the whole pulp cavity120,125, in mouse
incisor, owing to the variable results from different
experiments, there still be a need to further study the
effect of this bioactive molecule for future use in pulp
repair.

Enamel matrix proteins are products derived
from ameloblasts and their secreted products during
crown formation.126 These enamel matrix proteins
include amelogenin, ameloblastin, amelotin, tuftlein, and
enamelin and most likely other morphogens/growth
factors/proteins associated with crown formation.126

The form used clinically for regenerating periodontal
tissues is marketed under the trade name Emdogain

(EMD) which is composed mainly of amelogenin and
other ameloblast secreted proteins. Nakamura et al.
showed that EMD significantly increased reparative
dentin formation over the exposed pulp in swine teeth
compared to those treated with calcium hydroxide.127,128

However, the discrepancies of EMD treated injured
human pulp are noted. Sabbarini et al. showed the
promising application of EMD in primary human
teeth.129 On the contrary, Olsson et al. reported no
benefit of EMD in dentin/pulp repair of human
permanent premolars. EMD-treated human pulp resulted
in greater inflammatory response compared to calcium
hydroxide.130 In addition, Garrocho-Rangel et al.
reported the failure in randomized controlled trial of
EMD in direct pulp capping of primary molars.131 Due
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to the discrepancy of clinical outcomes, additional
well-controlled trials are needed to verify the clinical
benefit of these proteins.

EphB/ephrin-B molecules, tyrosine kinase
receptors and their ligands in the Eph family, play
essential roles in neural crest cell migration during
development and maintaining stem cell niche.132 EphB/
ephrin-B molecules participated in restricting human
DPSC attachment by the mitogen-activated protein
kinases (MAPK) pathway.133 The study validated that
EphB/ephrin-B signaling was an essential mechanism
to maintain and recruit DPSCs within their stem cell
niche under steady state conditions in dental pulp.133

The migration of DPSCs after injury to the damaged
site may be induced by the interaction of Eph/ephrin
and explains the importance of such molecules in
aspect of dentin regeneration.133 These results suggest
that the application of the Eph/ephrin molecules would
be advantageous for dental pulp development and
regeneration.

The role of inflammation in tissue regeneration
has been proposed; immune cells and inflammatory
cytokines may function to enhance dental pulp repair
after applying such bioactive molecules. Similar to the
response of dental pulp to carious lesion, the inflam-
matory process is generated after implantation with
bioactive molecules into the pulp cavity.134 An initial
inflammation process is considered as one of important
steps in wound healing.135 Progenitor/stem cells in
dental pulp are quiescent in the absence of pulpal
injury.8,9 During the damage, the inflammation is
produced and the amount of pulp cells is simultaneously
increased. Inflammation induced by implanted bioactive
molecules may be necessary for the proliferation and
differentiation of DPSCs to promote dentin and pulpal
repair. In short-term in vivo study, inflammation alone
can initiate wound healing, but the healing will not be
completed unless the bioactive molecule is added into
the exposed pulp.136

The bioactive agents may directly induce DPSC
differentiation into odontoblast-like cells that form the
dentin bridge. Alternatively, these molecules may
induce the de-differentiation or trans-differentiation
of differentiated cells in dental pulp to participate
in wound healing process. Another possibility is
that the bioactive molecules function indirectly to
cause the inflammation, which induces the migration
of inflammatory immune cells and secretion of
proinflammatory cytokines. These inflammatory cells
and cytokines may be involved in the reparative
process, de-differentiation  or trans-differentiation
of dental pulp cells.

Conclusion
The inflammation induced in the dental pulp in

response to injury plays an important role in tissue
regeneration. The migration of immune cells into the
injured site leads to the collection of secreted inflam-
matory cytokines, which may enhance dentin/pulp
repair by activating the differentiation of odontoblast
and/or odontoblast-like cells. These cells are further
responsible for the reparative dentin formation. Numbers
of conventional and experimental pulp capping
materials are recently introduced but none has a
consistent capacity to regenerate a primary structure of
tubular dentin-pulp complex. The mechanism of such
materials is to mimic process of normal dentin/pulp
regeneration. Although, calcium hydroxide seems to be
the standard material for direct pulp capping treatment,
the mechanism of action is still unclear. Other new
materials provide such a promising result to promote
dentin/pulp regeneration but need a rigorous clinical
verification for cost and benefit. Understanding the
mechanisms of dental pulp responses to pulp capping
materials and bioactive molecules will assist the dental
personnel to select appropriate materials and treatment
approaches for pulp injury.
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