

ความแข็งแรงดัดขวางสองแกนของวัสดุเซรามิก ชนิดเซอร์โคเนียที่อัตราส่วนคอร์ต่อวีเนียร์ต่างกัน

ปรารมภ์ ซาลิมี¹ ท.บ., Ph.D. ธีรา ธรรมวาสี² ท.บ.

¹ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ²นิสิตบัณฑิตศึกษา ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อ

วัตถุประสงค์ เพื่อทดสอบและเปรียบเทียบความแข็งแรงดัดขวางสองแกนและลักษณะการแตกหักของวัสดุเซอร์ โคเนียเซรามิกที่มีอัตราส่วนความหนาของคอร์ต่อวีเนียร์พอร์ซเลนต่างกัน

วัสดุและวิธีการ ทำการขึ้นรูปชิ้นตัวอย่างเซอร์โคเนียเซรามิก เป็นแผ่นกลมขนาดเส้นผ่านศูนย์กลาง 15 มิลลิเมตร หนา 1.2 มิลลิเมตร จำนวน 50 ชิ้น แบ่งเป็น 5 กลุ่ม กลุ่มละ 10 ชิ้นตามอัตราส่วนความหนาของชั้นคอร์ต่อชั้น วีเนียร์ กลุ่มที่ 1 = 1:0 (คอร์ทั้งชิ้น) กลุ่มที่ 2 = 2:1 (คอร์ 0.8 มิลลิเมตร) กลุ่มที่ 3 = 1:1 (คอร์ 0.6 มิลลิเมตร) กลุ่มที่ 4 = 1:2 (คอร์ 0.4 มิลลิเมตร) และ กลุ่มที่ 5 = 0:1 (วีเนียร์ทั้งชิ้น) นำชิ้นตัวอย่างมาทดสอบและคำนวณ หาค่าความแข็งแรงดัดขวางสองแกน ตามมาตรฐาน ISO 6872 ปี ค.ศ. 1995 โดยใช้เครื่องทดสอบสากลที่ ความเร็วหัวกด 1 มิลลิเมตรต่อนาที จนชิ้นตัวอย่างแตก

ผลการศึกษา ค่าเฉลี่ยความแข็งแรงดัดขวางสองแกนและค่าเบี่ยงเบนมาตรฐานของกลุ่มที่ 1 = 921.48 ± 106.86 เมกะพาสคัล กลุ่มที่ 2 = 1009.49 ± 98.72 เมกะพาสคัล กลุ่มที่ 3 = 895.68 ± 92.96 เมกะพาสคัล กลุ่มที่ 4 = 768.08 ± 73.17 เมกะพาสคัล และกลุ่มที่ 5 = 70.49 ± 8.54 เมกะพาสคัล ผลการวิเคราะห์ทางสถิติด้วย การทดสอบความแปรปรวนทางเดียวแล้วทำการเปรียบเทียบเซิงซ้อนแบบแทมเฮน พบว่า กลุ่มที่ 1-3 มีค่าความ แข็งแรงดัดขวางสองแกนแตกต่างกันอย่างไม่มีนัยสำคัญ (*p* > 0.05) แต่มีความแตกต่างกับกลุ่มที่ 4 และ 5 อย่าง มีนัยสำคัญทางสถิติ (*p* < 0.05)

สรุป ที่ความหนารวมของชิ้นตัวอย่าง 1.2 มิลลิเมตร อัตราส่วนคอร์ต่อวีเนียร์ 1:0 2:1 และ 1:1 ให้ค่าความ แข็งแรงดัดขวางสองแกนแตกต่างอย่างไม่มีนัยสำคัญ แต่เมื่ออัตราส่วนคอร์ต่อวีเนียร์ลดลงเป็น 1:2 ทำให้ค่าความ แข็งแรงดัดขวางสองแกนลดลงอย่างมีนัยสำคัญ และพบการแตกระหว่างชั้นในกลุ่มที่ประกอบด้วยชั้นคอร์และชั้น วีเนียร์

```
(ว ทันด จุฬาฯ 2554;34:75-86)
```

คำสำคัญ: ความแข็งแรงดัดขวางสองแกน; เซอร์โคเนียเซรามิก; อัตราส่วนคอร์ต่อวีเนียร์

บทน้ำ

้วัสดุออลเซรามิกมีหลายชนิดซึ่งมีความแตกต่างกันตาม ้วิธีการขึ้นรูปและโครงสร้างทางเคมีของวัสดุ วัสดุที่นิยมใช้ ้อย่างแพร่หลาย ได้แก่ กลาสเซรามิก เช่น ไอพีเอสเอมเพรส (IPS Empress, Ivoclar, Schaan, Liechtenstein) อะลูมิ นาเซรามิก เช่น อินซีแรมอะลูมินา (In-Ceram Alumina, Vita Zahnfabrik, Bad Sackingen, Germany) และเซอร์ ใคเนียเซรามิกที่ได้รับความนิยมมากในปัจจุบัน ซึ่งส่วนใหญ่ เป็นเซอร์โคเนียที่มียิทเทรียมออกไซด์เพื่อให้เกิดความเสถียร บางส่วน (Yttrium-oxide-partially-stabilized Zirconia, YPSZ) หรือที่เรียกอีกชื่อหนึ่งว่า ยิทเทรียเตตระโกนัลเซอร์ โคเนียโพลีคริสตัล หรือ วาย-ทีซีพี (Yttria tetragonal zirconia polycrystal, Y-TZP) ตัวอย่างเช่น เซอร์คอน (Cercon, Degudent GmbH, Hanue-Wolfgang, Germany)¹ เซอร์โคเนียเซรามิกมีความเข้ากันได้ทางชีวภาพกับ เนื้อเยื่อในช่องปาก (biocompatibility)²⁻⁵ และไม่เป็นพิษ ต่อเซล (non-cytotoxicity)⁶

วัสดุเซอร์โคเนียเซรามิกชนิด วาย-ทีซีพี มีการนำมา ใช้กันมากขึ้นในการบูรณะทางทันตกรรม เนื่องจากมีสมบัติ เชิงกลที่ดี โดยเฉพาะความแข็งแรงที่มากขึ้น จากขบวนการ ทรานซฟอร์เมชั่นทัฟเฟนนิ่ง (transformation toughening) ใดยการเปลี่ยนเฟสของอนุภาคเซอร์โคเนียจากเฟสเตตระโกนัล (tetragonal phase) ไปเป็นเฟสโมโนคลินิก (monoclinic phase) รอบปลายของรอยแตก ทำให้ปริมาตรของอนุภาค เพิ่มขึ้นเกิดเป็นความเค้นอัด (compressive stress) ที่ ป้องกันไม่ให้รอยแตกแผ่ขยายออกไป² เซอร์โคเนียเซรามิกชนิด วาย-ทีซีพี มีคุณสมบัติทางกลต่างๆ ที่ดี ในแง่ของความ สามารถในการดูดซับพลังงานก่อนการแตกหัก (fracture toughness) ซึ่งมีค่าประมาณ 6-8 เมกะพาสคัล.เมตร^{1/2} ค่าความแข็งแรงดัดขวาง (flexural strength) ประมาณ 800-1000 เมกะพาสคัล⁷ สามารถต้านทานต่อการแตกหัก (fracture resistance) ได้ดี โดยมีค่าแรงที่ทำให้เกิดการแตกหัก (fracture force) ประมาณ 2,226-3,486 นิวตัน ในครอบ ฟัน⁸ และ 1,973-2,237 นิวตัน ในสะพานฟัน^{9,10} ทำให้ เหมาะที่จะเป็นวัสดุบูรณะในฟันหลังที่ต้องต้านทานต่อแรงที่ มีมากในบริเวณนี้ คุณสมบัติที่น่าทึ่งของเซอร์โคเนียได้ถูกนำ มาใช้ประโยชน์ในทางการแพทย์และทางวิศวกรรมหลายอย่าง มาก่อนหน้านี้แล้ว ในทางการแพทย์สาขาศัลยกรรมกระดูก ได้ใช้โพลีคริสตัลไลน์อะลูมิเนียมออกไซด์ (polycrystaline aluminium oxide) เป็นวัสดุที่ใช้ทำสะโพกเทียม (total hip replacement, THR)⁷

ด้วยความแข็งแรงที่สูงกว่าเซรามิกชนิดอื่น ทำให้การ ทำครอบพันด้วยเซอร์โคเนียเซรามิกชนิดวาย-ทีซีพีสามารถ เพิ่มความหนาของวีเนียร์พอร์ซเลนจากการลดความหนาของ คอร์ ทำให้มีความโปร่งแสง และสามารถลดความหนาของ ส่วนโยง (connector) ในสะพานฟันลงได้ การใช้วัสดุ เซอร์โคเนียเซรามิกในการบูรณะฟันนั้น ทางบริษัทผู้ผลิต แนะนำให้เตรียมฟันทางด้านสบฟันให้มีช่องว่าง 1.5-2 มิลลิเมตร เพื่อเป็นที่อยู่ของคอร์เซอร์โคเนียหนา 1 มิลลิเมตร ด้านผนังตามแกน (axial wall) ให้มีช่องว่าง 1.5 มิลลิเมตร เพื่อเป็นที่อยู่ของคอร์เซอร์โคเนียหนา 0.4 มิลลิเมตร ความ แข็งแรงของซิ้นงานเซรามิกจึงขึ้นกับความหนาของทั้งส่วน คอร์และส่วนวีเนียร์พอร์ซเลนประกอบกัน บางบริเวณมีช่อง ้ว่างที่จะบูรณะจำกัดทำให้ต้องเปลี่ยนแปลงอัตราส่วนความ หนาของคอร์และวีเนียร์พอร์ซเลน ซึ่งอาจทำให้ความแข็งแรง ของชิ้นงานลดลงได้ การทดลองทางห้องปฏิบัติการและจาก การตรวจทางคลินิกพบว่า ครอบฟันมักแตกหักโดยส่วนของ ้วีเนียร์พอร์ซเลนบิ่นแตกแยกออกมาจากส่วนคอร์ประมาณ ร้อยละ 70-78¹¹ ซึ่งอาจเนื่องมาจากการใช้อัตราส่วนความ หนาของคอร์ต่อวีเนียร์พอร์ซเลนที่ไม่เหมาะสม และความ เข้ากันได้ (compatibilitiv) ระหว่างคอร์กับวีเนียร์พอร์ซเลน เช่น องค์ประกอบ สัมประสิทธ์การขยายตัวเมื่อร้อน ฯลฯ ซึ่งยังเป็นที่สงสัย

Thomvanich Salimee และ Arksornnukit¹² ได้ ทำการทดสอบหาค่าความแข็งแรงดัดขวางสองแกน (biaxial flexural strength) ในวัสดุออลเซรามิกอินซีแรมและ ใอพีเอสเอมเพรส 2 ที่มีอัตราส่วนความหนาของคอร์ต่อ วีเนียร์แตกต่างกันดังนี้ คือ 1:0 2:1 1:1 1:2 และ 0:1 พบว่า อัตราส่วนคอร์ต่อวีเนียร์ที่แตกต่างกันมีผลทำให้ค่าความแข็งแรง ดัดขวางสองแกนของอินซีแรมมีความแตกต่างอย่างมีนัยสำคัญ แต่ในไอพีเอสเอมเพรส 2 ไม่พบความแตกต่างอย่างมีนัยสำคัญ และความแข็งแรงโดยรวมของเซรามิกที่ประกอบด้วยวัสดุคอร์ และวีเนียร์ขึ้นอยู่กับชนิดของเซรามิกและอัตราส่วนคอร์ต่อ วีเนียร์ ซึ่งเรื่องดังกล่าวยังมีการศึกษากันไม่มากนักกับวัสดุ เซอร์โคเนียเซรามิก ดังนั้นการวิจัยครั้งนี้ จึงมีวัตถุประสงค์ เพื่อทำการศึกษาถึงอัตราส่วนความหนาของคอร์เซอร์โคเนีย และวีเนียร์พอร์ซเลนที่เหมาะสมที่จะให้ความแข็งแรงแก่ครอบ-ฟันและสะพานฟันเซอร์โคเนียเซรามิกชนิดวาย-ทีซีพี โดย เปรียบเทียบค่าความแข็งแรงดัดขวางสองแกนและลักษณะ การแตกหัก ในชิ้นตัวอย่างที่มีความหนาของส่วนคอร์และ วีเนียร์พอร์ซเลนแตกต่างกัน

วัสดุและวิธีการ

ขึ้นรูปซิ้นตัวอย่างจากวัสดุเซอร์โคเนียมออกไซด์ เซอร์คอนซึ่งมียิทเทรียมออกไซด์ผสมอยู่ร้อยละ 5 และวีเนียร์

ตารางที่ 1 การแบ่งกลุ่มชิ้นตัวอย่างที่ใช้ในการศึกษานี้ Table 1 Groups of specimen in this study พอร์ซเลนเซอร์คอนซีแรมคิส (Cercon Base and Cercon Ceram Kiss, Degudent GmbH, Hanue-Wolfgang, Germany) โดยแบ่งชิ้นตัวอย่างออกเป็น 5 กลุ่ม กลุ่มละ 10 ชิ้น แบ่งตามความหนาและอัตราส่วนคอร์ต่อวีเนียร์ ดังตารางที่ 1 โดยเป็นแผ่นกลมเส้นผ่านศูนย์กลาง 15 มิลลิเมตร หนา 1.2 มิลลิเมตร (รูปที่ 1)

การเตรียมชั้นคอร์

สร้างชั้นคอร์จากแท่งเซอร์คอนเบสที่ผ่านการเผาบางส่วน (partially sintered) โดยใช้หัวกรอคาร์ไบด์กรอให้ได้เป็น แผ่นกลม ให้มีความหนาและเส้นผ่านศูนย์กลางใหญ่กว่า

Group	1	2	3	4	5
Core : veneer ratio	1:0	2:1	1:1	1:2	0:1
Core : veneer thickness (mm.)	1.2:0	0.8:0.4	0.6:0.6	0.4:0.8	0:1.2
Number	10	10	10	10	10

รูปที่ 1 โครงสร้างและขนาดชิ้นตัวอย่างที่ใช้ทดสอบความแข็งแรงดัดขวางสองแกน

Fig. 1 Structure and dimension of test specimen for biaxial flexural strength

CU Dent J. 2011;34:75-86

ขนาดที่ต้องการร้อยละ 30 เพื่อชดเชยการหดตัวหลังการ เผาตามคำแนะนำของบริษัทผู้ผลิต จากนั้นนำมาขัดด้วย กระดาษทรายขัดแห้งเบอร์ 100 120 360 500 และ 800 ตามลำดับ นำไปเผาที่อุณหภูมิ 1,350 องศาเซลเซียส เป็น เวลา 6 ชั่วโมง ทิ้งไว้ให้เย็น วัดควบคุมความหนาโดยใช้ ดิจิตอลไมโครมิเตอร์ วัด 5 ตำแหน่ง ดังรูปที่ 2 นำชิ้นตัวอย่าง มาตรวจหารอยร้าวโดยแช่ชิ้นตัวอย่างให้สัมผัสกับน้ำยาตรวจ หารอยร้าว (VITA In-Ceram Testing Liquid, Vita Zahnfabrik, BadSakingen, Germany) ทั้งสองด้าน ๆ ละ 10 นาที นำชิ้นตัวอย่างที่ตรวจผ่านแล้วมาทำการพ่นทราย (sandblast) ด้วยผงอะลูมิเนียมออกไซด์ขนาด 110 ไมครอน ที่ความดัน 3.5 เฮคโตพาส-คัล ระยะห่าง 10 มิลลิเมตร เอียงทำมุม 45 องศากับระนาบ แล้วนำไปทำความสะอาด ด้วยเครื่องทำความสะอาดแบบความถี่เหนือเสียงเป็นเวลา 15 นาที

การเตรียมชั้นวีเนียร์

สร้างชั้นวีเนียร์พอร์ซเลน สำหรับชิ้นตัวอย่างในกลุ่มที่ 2-5 โดยในกลุ่มที่ 2-4 ทำเพิ่มบนชั้นคอร์โดยทาไลเนอร์ และนำไปเข้าเตาเผาตามโปรแกรมการเผาที่บริษัทกำหนด ทิ้งไว้ให้เย็น จากนั้นนำไปขึ้นรูปในแม่แบบซิลิโคนที่ใหญ่กว่า ขนาดที่ต้องการเพื่อชดเซยการหดตัวหลังการเผา ส่วนในกลุ่ม ที่ 5 ขึ้นรูปวีเนียร์พอร์ซเลนทั้งชิ้นโดยใช้แผ่นแก้วบาง (glass slide) ร่วมกับแม่แบบวงกลมที่ทำจากปูนยิปซั่ม เผาชั้น วีเนียร์และวีเนียร์ทั้งชิ้นตามโปรแกรมการเผาที่บริษัทกำหนด ทิ้งไว้ให้เย็น นำมากรอแต่งด้านที่พอกวีเนียร์พอร์ซเลนด้วย หัวกรอซิลิโคนและขัดด้วยกระดาษทรายน้ำเบอร์ 360 500 800 และ 1000 ตามลำดับ ให้ได้ความหนาและมีระนาบที่ ถูกต้อง วัดความหนาซิ้นตัวอย่างให้ได้ความหนา 1.2 ± 0.005 มิลลิเมตร และเส้นผ่านศูนย์กลาง 15 ± 0.5 มิลลิเมตร นำไป ทำความสะอาดด้วยเครื่องทำความสะอาดแบบความถี่เหนือ เสียงเป็นเวลา 15 นาที ในขบวนการสร้างชิ้นตัวอย่าง เมื่อ ตรวจด้วยสายตา หากพบชิ้นงานมีรอยร้าว รูพรุน บิ่นแตก หรือไม่ได้ขนาด จะทำการคัดออกและสร้างชิ้นใหม่ทดแทน เก็บชิ้นตัวอย่างที่ได้ในอุณหภูมิห้อง

การทดสอบความแข็งแรงดัดขวางสองแกน

นำชิ้นตัวอย่างมาทดสอบความแข็งแรงดัดขวางสอง แกนตามมาตรฐาน ISO 6872 ปี ค.ศ. 1995¹³ โดยใช้เครื่อง ทดสอบสากล (Instron testing machine model 5566, Instron Co., USA) และแป้นทดสอบเป็นลูกบอลเหล็กรอง รับสามลูก (piston on three ball) โดยใช้หัวกดขนาดเส้น ผ่านศูนย์กลาง 0.75 มิลลิเมตร วางชิ้นตัวอย่างลงบนแป้น ทดสอบโดยให้ส่วนของวีเนียร์พอร์ซเลนอยู่ทางด้านบน เคลื่อนหัวกดลงที่จุดกลางของชิ้นตัวอย่างด้วยความเร็ว 1 มิลลิเมตรต่อนาทีจนแตก บันทึกค่าแรงกดสูงสุดคำนวณ ค่าความแข็งแรงดัดขวางสองแกนตามสูตรสำหรับชิ้นงาน ชั้นเดียว (กลุ่มที่ 1 และ 5)¹³ และชิ้นงานสองชั้น (กลุ่มที่ 2 3 และ 4)¹⁴

นำข้อมูลที่ได้มาวิเคราะห์ทางสถิติ โดยใช้โปรแกรม เอสพีเอสเอส รุ่น 13 (SPSS Inc, USA) หาค่าความแข็งแรง ดัดขวางสองแกนเฉลี่ยและค่าเบี่ยงเบนมาตรฐานและวิเคราะห์

รูปที่ 2 จุดแสดงตำแหน่งการวัดควบคุมความหนาของชิ้นตัวอย่าง ลูกศรแสดงตำแหน่งที่ใช้วัดขนาดเส้นผ่านศูนย์กลาง

Fig. 2 Locations used to control thickness (dots) and diameter (arrows)

ความแปรปรวนแบบทางเดียว (one-way ANOVA) ที่ระดับ ความเชื่อมั่นร้อยละ 95 นำชิ้นตัวอย่างที่แตกมาตรวจสอบ ลักษณะพื้นผิวด้วยกล้องจุลทรรศน์ชนิดสเตอริโอและกล้อง จุลทรรศน์อิเลคตรอนแบบส่องกราดเพื่อดูลักษณะการแตก

ผลการศึกษา

จากผลการทดลอง ค่าเฉลี่ยแรงกดสูงสุดในแต่ละกลุ่ม แสดงในรูปที่ 3 นำค่าแรงกดสูงสุดของแต่ละชิ้นตัวอย่างมา คำนวณค่าความแข็งแรงดัดขวางสองแกน จากนั้นนำข้อมูล ไปทดสอบการกระจายตัว พบว่ามีการกระจายเป็นปกติและ ทดสอบความแปรปรวนด้วยการทดสอบแบบลีวีน (Levene's Test) และการเปรียบเทียบเชิงซ้อนแบบแทมเฮน (Tamhane multiple comparison) พบว่าในกลุ่มที่ 1 2 และ 3 มีค่า ความแข็งแรงดัดขวางสองแกนแตกต่างกันอย่างไม่มีนัย สำคัญทางสถิติ และเมื่อนำไปเปรียบเทียบกับกลุ่มที่ 4 และ 5 พบว่า มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (รูปที่ 4) ซิ้นตัวอย่างที่แตกแบ่งเป็น 2 ลักษณะ คือ การแตก เป็นส่วนๆ ตามแนวรัศมี ซึ่งพบในกลุ่มตัวอย่างที่เป็นชั้น เดียว คือ กลุ่มที่ 1 และ 5 (รูปที่ 5) และการแตกล่อนระหว่าง ชั้น (delamination) ซึ่งพบในกลุ่มที่เป็นสองชั้น (รูปที่ 6 และ 7) โดยชั้นวีเนียร์ที่แตกล่อนส่วนใหญ่จะมีชั้นของเพสท์ ไลเนอร์ติดออกมาด้วย

เมื่อพิจารณากราฟแสดงความสัมพันธ์ระหว่างระยะทาง กับแรงที่เปลี่ยนไปของชิ้นตัวอย่างทั้ง 5 กลุ่ม พบว่ามี ลักษณะเหมือนกันคือ มียอดแหลมของกราฟที่สัมพันธ์กับ การแตกหักของชิ้นตัวอย่างเพียงจุดเดียว (รูปที่ 8)

วิจารณ์

ในการศึกษานี้ทำการทดสอบโดยให้ชั้นคอร์อยู่ด้านล่าง โดยให้ชั้นวีเนียร์รับแรงกดด้านบน เพื่อสามารถนำมาเปรียบ เทียบกับเซรามิกชนิดอินซีแรมและไอพีเอสเอมเพรส 2 ที่ได้ ทำการศึกษาไว้ก่อนหน้านี้¹² โดยมีการศึกษาที่แสดงให้เห็น ว่าค่าความแข็งแรงดัดขวางสองแกนได้รับผลจากคุณสมบัติ

= no significant difference (p > 0.05)

รูปที่ 3 แผนภูมิแสดงค่าเฉลี่ยของแรงที่ทำให้เกิดการแตกหักของเซรามิก 5 กลุ่ม

Fig. 3 Mean and standard deviation of fracture force of 5 groups

- **รูปที่ 4** ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความแข็งแรงดัดขวางสองแกนของชิ้นตัวอย่างทั้ง 5 กลุ่ม
- Fig. 4 Mean and standard deviation of biaxial flexural strength of five groups

- **รูปที่ 5** ลักษณะการแตกในแนวรัศมี พบในกลุ่มที่เป็นชั้นเดียว (a) กลุ่มที่ 1 คอร์เซอร์โคเนียทั้งชิ้น พบการแตกออกเป็น 4-6 ชิ้น และ (b) กลุ่มที่ 5 วีเนียร์พอร์ซเลนทั้งชิ้น พบการแตกออกเป็น 2-4 ชิ้น
- **Fig. 5** Fracture mode of radial crack found in monolayer specimens: a) group 1 zirconia core broke into 4–6 pieces b) veneering porcelain broke into 2–4 pieces

- **รูปที่ 6** รูปแบบการแตกในชิ้นตัวอย่างของกลุ่มที่ประกอบด้วยสองชั้น กลุ่มที่ 2 (a) กลุ่มที่ 3 (b) และกลุ่มที่ 4 (c) พบการ แตกแบบรัศมีร่วมกับการแตกล่อนของชั้นวีเนียร์บริเวณใกล้จุดกด
- **Fig. 6** Fracture mode in bilayer specimen in group 2 (a), group 3 (b), and group 4 (c). Radial crack were found in combination with delamination of veneer porcelain near loading point

- **ฐปที่ 7** ภาพจากกล้องจุลทรรศน์อิเลคตรอนแสดงลักษณะรอยแตกของชิ้นตัวอย่างในกลุ่มที่ 2
 - a. พบบริเวณที่ชั้นวีเนียร์แยกกับชั้นคอร์ และรอยแตกแบบทรงกรวย (ลูกศร) ในชั้นวีเนียร์ (กำลังขยาย 75 เท่า)
 - b. แสดงพื้นผิวการแตกบริเวณรอยต่อ พบการแตกระหว่างชั้นเพสท์ไลเนอร์แยกออกมาจากชั้นคอร์ (กำลังขยาย 2000 เท่า)
- Fig. 7 Scanning electron micrograph showed fracture pattern in specimen of group 2
 - a. Delamination at the interface and cone crack (arrow) were found (75 x)
 - b. Fracture surface at bonding interface, delamination of paste liner from core material was observed (2000 x)

ของวัสดุที่อยู่ชั้นล่างมากกว่า¹⁵ นอกจากนี้ผลจากวิธีไฟในต์ เอลิเมนต์ (finite element) แสดงให้เห็นว่า การวางใน ลักษณะดังกล่าวจะมีการกระจายแรงเป็นลักษณะเดียวด้วย แรงเค้นอัดบนผิววีเนียร์ภายใต้แรงกดเช่นเดียวกับสภาวะทาง คลินิก¹⁶

จากผลการทดลอง พบว่าในกลุ่มตัวอย่างที่ 1 2 และ 3 มีค่าความแข็งแรงดัดขวางสองแกน แตกต่างกันอย่างไม่มีนัย สำคัญทางสถิติ แสดงให้เห็นว่าความหนาของคอร์เซอร์โคเนีย ต่อวีเนียร์พอร์ซเลนในอัตราส่วนดังกล่าวไม่มีผลต่อความแข็งแรง ดัดขวางสองแกน แต่เมื่อความหนาของชั้นคอร์ลดลงเป็น 0.4 มิลลิเมตร ในกลุ่มที่ 4 จะทำให้ค่าความแข็งแรงดัดขวางสอง แกนลดลงอย่างมีนัยสำคัญ คล้ายกับผลของหลายงาน วิจัย^{15,17-19} ที่กล่าวถึงความสำคัญของอัตราส่วนคอร์และ วีเนียร์ที่มีผลต่อความแข็งแรงของเซรามิก ชนิดเซอร์โคเนีย

- **รูปที่ 8** รูปแบบความสัมพันธ์ระหว่างการยึดกับแรงกดของชิ้นตัวอย่างขณะทดสอบ โดยพบยอดแหลมของกราฟที่สัมพันธ์กับ การแตกหักของชิ้นเพียงจุดเดียวในทุกกลุ่มตัวอย่าง
- Fig. 8 Pattern of load-extension relation in testing specimen. Single peak of graph at fracture point was observed in every group

และอะลูมินา โดยอัตราส่วนคอร์และวีเนียร์ที่มากขึ้นมีแนวโน้ม ทำให้เซรามิกมีความแข็งแรงมากขึ้น ซึ่งปัจจัยสำคัญที่ทำให้ เกิดความแตกต่างนี้ขึ้นอยู่กับความเข้ากันได้ของวัสดุทั้งสอง ชนิดด้วยซึ่งได้แก่คุณสมบัติเชิงกล เช่น ค่ามอดูลัสสภาพยึด หยุ่น ค่าสัมประสิทธิ์การขยายตัวเมื่อร้อน และการยึดติดกัน ของวัสดุ เป็นต้น ซึ่งขึ้นอยู่กับองค์ประกอบของเซรามิกทั้ง สองชนิด แต่จะต่างจากวัสดุไอพีเอสเอมเพรสในการทดลอง ก่อนหน้านี^{้12} เนื่องจากวัสดุไอพีเอสเอมเพรสมีความเข้ากัน ได้กับวีเนียร์พอร์ซเลนในด้านองค์ประกอบและค่ามอดูลัส สภาพยึดหยุ่นที่ใกล้เคียงกว่า

เป็นที่น่าสังเกตว่าค่าแรงสูงสุดเฉลี่ยที่ทำให้เกิดการ แตกหักของชิ้นตัวอย่างมีค่ามากขึ้นตามชั้นคอร์ที่หนาขึ้น (รูปที่ 3) แต่เมื่อนำมาคำนวณหาค่าความแข็งแรงดัดขวาง สองแกนพบว่า ในกลุ่มที่เป็นคอร์เซอร์โคเนียร่วมกับวีเนียร์ พอร์ซเลนในอัตราส่วน 2:1 กลับมีค่าความแข็งแรงดัดขวาง สองแกนมากกว่ากลุ่มที่เป็นคอร์เซอร์โคเนียทั้งชิ้น เช่นเดียว กับรายงานผลการวิจัย ของ Guazzato และคณะ¹⁶ ที่พบว่า ชิ้นตัวอย่างที่ประกอบด้วยชั้นคอร์และวีเนียร์พอร์ซเลนใน อัตราส่วน 1:1 ในการทดสอบแบบเดียวกันให้ค่าความแข็งแรง ดัดขวางสองแกนมากกว่าชิ้นตัวอย่างที่เป็นคอร์เซอร์โคเนีย ทั้งชิ้นอย่างมีนัยสำคัญทางสถิติ สาเหตุที่เป็นเช่นนี้น่าจะ เนื่องจากความเข้ากันได้ของค่าสัมประสิทธ์การขยายตัวเมื่อ ร้อนที่เข้ากันได้ดี ทำให้เกิดความเค้นค้าง (residual stress) ที่พอเหมาะทำให้เสริมความแข็งแรงของคอร์เซอร์โคเนียมากขึ้น อย่างไรก็ตามค่าที่มากกว่ากันดังกล่าวก็มีความแตกต่างอย่าง ไม่มีนัยสำคัญทางสถิติในการทดลองนี้

การคำนวณหาค่าความแข็งแรงดัดขวางสองแกนในชิ้น ตัวอย่างที่ประกอบด้วยวัสดุสองชนิดยึดติดกันซึ่งมีคุณสมบัติ ของค่ามอดูลัสสภาพยึดหยุ่นและค่าอัตราส่วนปัวซองต่างกัน ในงานวิจัยนี้ ได้ใช้สูตรที่ดัดแปลงมาจากสูตรของ Roark ที่ ใช้หาค่าความเค้นดัดโค้ง (bending stress) ด้านใต้ของวัสดุ ที่ประกอบด้วยสองชั้น²⁰ และถือว่าเซรามิกแต่ละชั้นมีค่า อัตราส่วนปัวซองเท่ากัน¹⁴ ดังนั้นค่าความแข็งแรงดัดขวางสอง แกนในชิ้นตัวอย่างจึงขึ้นกับความแตกต่างกันของค่ามอดูลัส สภาพยึดหยุ่นเป็นสำคัญ โดยวัสดุที่มีค่ามอดูลัสสภาพยึด หยุ่นของชั้นคอร์และชั้นวีเนียร์ที่ต่างกันมากจะเกิดการแตก ระหว่างชั้นได้ง่าย¹⁶ จากงานวิจัยนี้ค่ามอดูลัสสภาพยึดหยุ่น ของคอร์เซอร์โคเนียต่างกับวีเนียร์พอร์ซเลนประมาณ 3.5 เท่า (210 และ 60 กิกะพาสคัล) ทำให้การส่งผ่านและกระจาย แรงไปในเซรามิกทั้งชิ้นทำได้ไม่ดี สอดคล้องกับการศึกษา ก่อนหน้านี้¹² ซึ่งพบว่าอินซีแรมมีค่ามอดูลัสสภาพยืดหยุ่น ของคอร์และวีเนียร์ต่างกันมาก ทำให้พบการแตกแยกชั้นของ อินซีแรมเป็นส่วนใหญ่ แต่ไม่พบการแตกลักษณะนี้ในไอพี เอสเอมเพรส 2 ที่มีค่ามอดูลัสสภาพยืดหยุ่นของคอร์และวีเนียร์ ที่ต่างกันเพียง 1.4 เท่า

ค่าสัมประสิทธิ์การขยายตัวเมื่อร้อนที่ต่างกันของวัสดุ แต่ละชั้นมีผลต่อการยึดติดของวัสดุเช่นกัน²¹ โดยคอร์เซอร์ โคเนียมีค่า 10.5 x 10⁻⁶/องศาเคลวิน แต่วีเนียร์พอร์ซเลน เซอร์คอนซีแรมคิสมีค่า 9.2 x 10⁻⁶/องศาเคลวิน ที่อุณหภูมิ 25-500 องศาเซลเซียส ทำให้มีผลต่อความเข้ากันได้ของ วัสดุทั้งสองชนิด De Jager และคณะ²² สรุปว่าการที่จะเพิ่ม ความแข็งแรงให้ครอบฟันเซรามิกนั้น ชั้นวีเนียร์พอร์ซเลนใกล้ กับบริเวณที่ติดกับชั้นคอร์เป็นตำแหน่งที่สำคัญ การที่มีค่า สัมประสิทธิ์การขยายตัวเมื่อร้อนที่ไม่เข้ากัน ทำให้เพิ่มความ เค้นดึงในชั้นวีเนียร์ จึงแนะนำให้ค่านี้ต่างกันน้อยที่สุดเท่าที่ จะเป็นไปได้

ดังนั้นการใช้เซอร์โคเนียเซรามิกร่วมกับวีเนียร์พอร์ซเลน ในการบูรณะฟันจึงมีแนวใน้มเดียวกับเซรามิกชนิดอะลูมินา ซึ่งความแข็งแรงของเซรามิกจะมีความสัมพันธ์กับความหนา ของคอร์ที่เพิ่มขึ้น แม้เซอร์โคเนียเซรามิกจะมีความแข็งแรง มากกว่า แต่ก็ควรให้ความระมัดระวังในบริเวณที่อัตราส่วน คอร์และวีเนียร์ต่ำเช่นบริเวณปลายฟันจึงมีโอกาสที่จะเกิดการ แตกหักได้ง่าย

เมื่อพิจารณาลักษณะการแตกของชิ้นตัวอย่างพบว่า ในกลุ่มที่มีชั้นเดียว ชิ้นตัวอย่างเซอร์โคเนียส่วนใหญ่มีการ แตกในแนวรัศมี (4-6 ชิ้น) มากกว่าชิ้นตัวอย่างวีเนียร์ (2-4 ชิ้น) ดังรูปที่ 5 เนื่องมาจากคอร์เซอร์โคเนียมีความแข็งแรงมาก กว่าจึงกระจายแรงไปทั่วบริเวณชิ้นตัวอย่างได้ดีกว่า เมื่อดู จากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดพบว่าคอร์เซอร์ โคเนียมีลักษณะแน่นทึบไม่มีรูพรุน ต่างจากวีเนียร์พอร์-ซเลนซึ่งมีรูพรุนอยู่ทั่วไป ส่วนลักษณะการแตกในกลุ่มที่ 2 3 และ 4 พบการแตกแบบรัศมีและมีการแตกล่อนของชั้น วีเนียร์บริเวณส่วนกลางออกมา (รูปที่ 6) ส่วนวีเนียร์ที่ขอบนอก ของซิ้นตัวอย่างจะไม่แตกล่อนออกมา เนื่องมาจากความเค้น ที่เกิดจากการสัมผัส (contact stress) จะมีอิทธิพลให้เกิด ความเค้นอัดใกล้กับบริเวณหัวกด²³ จึงเห็นการแตกล่อนของ ชั้นวีเนียร์ในส่วนกลาง และสอดคล้องกับผลการวิเคราะห์ ไฟในต์เอลิเมนต์ที่รายงานมาก่อนหน้านี้^{16,23} นอกจากนี้ เมื่อเปรียบเทียบกันจะพบว่าความกว้างของชั้นวีเนียร์รอบ นอกที่เหลือติดกับชั้นคอร์ในกลุ่มที่ 2 จะกว้างกว่าในกลุ่มที่ 3 และกลุ่มที่ 4 เป็นไปได้ว่า ชิ้นตัวอย่างที่มีชั้นคอร์ที่บางกว่า เกิดการโค้งงอ (deflection) ได้มากกว่า จึงเกิดการแตกล่อน ของชั้นวีเนียร์เป็นบริเวณกว้างกว่า ดังนั้นส่วนคอร์ด้านใต้ที่ หนากว่าจึงสามารถป้องกันการโค้งงอได้ดี ซึ่งก่อให้เกิดความ แข็งแรงของวัสดุเซรามิกทั้งชิ้นมากกว่า

จุดเริ่มต้นรอยแตกของชั้นเซรามิกสามารถเกิดจาก ตำแหน่งต่างๆ ได้แก่ ส่วนต่อระหว่างชั้นคอร์และชั้นวีเนียร์ พื้นผิวของชั้นวีเนียร์ และพื้นผิวของชั้นคอร์¹¹ เมื่อพิจารณา กราฟแสดงความสัมพันธ์ระหว่างระยะทางกับแรงที่เปลี่ยนไป ของชิ้นตัวอย่างทั้ง 5 กลุ่ม พบว่าลักษณะเหมือนกันทุกกลุ่ม คือ มียอดแหลมของกราฟที่สัมพันธ์กับการแตกหักของชิ้น ตัวอย่างเพียงจุดเดียว (รูปที่ 8) สอดคล้องกับผลของ Wakabayashi และ Anusavice¹⁸ ซึ่งอธิบายว่ารอยร้าวเริ่ม เกิดจากในชั้นวีเนียร์แผ่ขยายมาถึงชั้นคอร์แล้วจึงแผ่ขยายไป ตามรอยต่อระหว่างชั้น โดยที่ชั้นวีเนียร์ยังยึดติดอยู่กับส่วน คอร์ พร้อมกับการเกิดรอยร้าวที่บริเวณด้านใต้ของคอร์ผ่าน ไปสู่ชั้นวีเนียร์นำไปสู่การแตกหักทั้งชิ้นและเกิดการแตกล่อนของ ชั้นวี้เนียร์ แต่ผลนี้ต่างกับในการวิจัยของ Guazzatto และ คณะ¹⁶ และ Studart และคณะ²⁴ ซึ่งพบว่ามียอดแหลมของ กราฟ 2 จุดเพิ่มขึ้นมาก่อนที่จะถึงยอดแหลมสูงสุด ซึ่ง ส้มพันธ์กับการแตกของชั้นพอร์ซเลนก่อนที่จะเกิดการแตกหัก ของชั้นคอร์ในที่สด ความแตกต่างของผลดังกล่าวอาจเนื่องมา จากแรงยึดติดของชั้นคอร์และวีเนียร์หรือจากความแข็งแรง ของตัวพอร์ซเลนวีเนียร์ซึ่งอาจต่างกันในแต่ละการทดลอง

ในการทดลองนี้พบว่าพบว่าชั้นของเพสท์ไลเนอร์จะติดไป กับส่วนของชั้นวีเนียร์ที่แตกล่อนออกมาจากชั้นคอร์เซอร์โคเนีย เป็นส่วนใหญ่ (รูปที่ 7) องค์ประกอบของไลเนอร์อาจมีผล ทำให้ชั้นไลเนอร์ติดไปกับชั้นวีเนียร์ เนื่องจากไลเนอร์เป็น เฟลด์สปาติกพอร์ซเลนที่มีชีลีเนียม (selenium) เป็นองค์ ประกอบ จึงทำให้เข้ากันได้ดีกว่าส่วนคอร์²⁵ และเป็นไปได้ ว่าชั้นเพสท์ไลเนอร์มีค่ามอดูลัสสภาพยืดหยุ่นและส่วน ประกอบที่ใกล้เคียงกับชั้นวีเนียร์พอร์ซเลน ทำให้เกิดการแตก

ล่อนติดออกมากับชั้นวีเนียร์เป็นส่วนใหญ่

ในทางคลินิกการเบี่ยงเบนของรอยแตก (crack deflection) ทำให้พบชั้นวีเนียร์พอร์ซเลนแตกมากกว่าที่จะเกิดการ แตกหักทั้งชิ้น เนื่องจากเซอร์โคเนียต้านทานการเกิดรอยร้าว ได้ดีกว่า¹⁵ โดยรอยแตกที่แผ่ขยายมาจากชั้นวีเนียร์จะเกิด การเบียงเบนที่รอยต่อระหว่างชั้นคอร์และชั้นวีเนียร์ เมื่อใช้ วัสดุคอร์ที่มีความเหนียว เช่น อินซีแรมเซอร์โคเนีย และ เซอร์โคเนียเซรามิกชนิดวาย-ทีซีพี²⁴ แต่รอยแตกไม่สามารถ แผ่ขยายจากเซรามิกที่มีค่ามอดูลัสและความเหนียวต่ำไปสู่ เซรามิกที่มีค่าดังกล่าวมากกว่าได้²⁶

มีปัจจัยอีกหลายอย่างที่มีผลต่อลักษณะการแตกหัก ของวัสดุเซรามิกที่ประกอบด้วยชั้นคอร์และวีเนียร์พอร์ซเลน ได้แก่ ความเค้นที่เหลือค้างจากกระบวนการขึ้นรูป ลักษณะ การเตรียมฟันเพื่อรองรับวัสดุบูรณะ การเกิดทรานซฟอร์เมชั่น ของผลึกเซอร์โคเนียที่ส่วนเชื่อมระหว่างคอร์กับวีเนียร์เนื่อง จากอณหภมิหรือแรงเค้น การสร้างชิ้นงานที่อาจมีรอยร้าว เกิดขึ้นตามธรรมชาติอยู่แล้ว สารยึดติด (luting agent) ทิศทาง ตำแหน่ง และชนิดของแรงที่ให้ และสภาพแวดล้อม ขณะทดสอบ^{21,26-29} องค์ประกอบของวัสดุและค่าความ สามารถในการดูดซับพลังงานก่อนการแตกหักของวัสดุแต่ละ ชั้น²³ ดังนั้น แม้การใช้คอร์เซอร์โคเนียจะเป็นที่ยอมรับว่า สามารถต้านทานต่อการแตกหักได้สูง แต่ก็ควรให้ความ สำคัญกับโครงสร้างอัตราส่วนคอร์และวีเนียร์ที่เหมาะสม กระบวนการขึ้นรูปชั้นวีเนียร์พอร์ซเลนรวมทั้งการปรับปรุงแรง ยึดระหว่างชั้นคอร์กับชั้นวีเนียร์ให้ดีขึ้นเพื่อความสำเร็จใน ระยะยาว

สรุป

อัตราส่วนคอร์ต่อวีเนียร์ที่แตกต่างกันมีผลต่อค่าความ แข็งแรงดัดขวางสองแกนของวัสดุเซอร์โคเนียเซรามิกชนิด วาย–ทีซีพี โดยที่อัตราส่วนคอร์ต่อวีเนียร์ 1:0 2:1 และ 1:1 ให้ค่าความแข็งแรงดัดขวางสองแกนแตกต่างกันอย่างไม่มีนัย สำคัญ แต่เมื่ออัตราส่วนคอร์ต่อวีเนียร์ลดลงเป็น 1:2 จะทำ ให้ค่าความแข็งแรงดัดขวางสองแกนลดลงอย่างมีนัยสำคัญ ทางสถิติ

กิตติกรรมประกาศ

ขอขอบคุณการสนับสนุนเงินทุนการวิจัยจากกองทุนวิจัย คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ประจำปี 2550 ขอขอบคุณอาจารย์ไพพรรณ วิทยานนท์ ที่ช่วยให้ ความรู้และคำปรึกษาทางด้านสถิติ และขอขอบคุณบริษัท เซอร์คอนไทยแลนด์ ที่เอื้อเฟื้อวัสดุเซอร์คอนเบสและวีเนียร์ พอร์ซเลน อุปกรณ์ต่าง ๆ และสถานที่ในการเตรียมชิ้นตัวอย่าง

เอกสารอ้างอิง

- Rosenblum MA, Schulman A. A review of allceramic restorations. J Am Dent Assoc. 1997; 128:297-307.
- Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. 1989;23:45-61.
- Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent. 1992;68:322-6.
- 4. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1–25.
- Covacci V, Bruzzese N, Maccauro G, Andreassi C, Ricci GA, Piconi C, et al. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials. 1999;20:371–6.
- Uo M, Sjogren G, Sundh A, Watari F, Bergman M, Lerner U. Cytotoxicity and bonding property of dental ceramics. Dent Mater. 2003;19:487-92.
- Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299–307.
- Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide-partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil. 2004;31:682-8.
- 9. Sundh A, Molin M, Sjögren G. Fracture resistance

of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005;21:476-82.

- Att W, Stamouli K, Gerds T, Strub JR. Fracture resistance of different zirconium dioxide three-unit all-ceramic fixed partial dentures. Acta Odontol Scand. 2007;65:14–21.
- Kelly JR, Tesk JA, Sorensen JA. Failure of allceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res. 1995;74:1253–8.
- Thomvanich P, Salimee P, Arksornnukit M. Biaxial flexural strength of two all-ceramic materials at different layering thickness. CU Dent J. 2007;30:141-56.
- The international organization for Standardization.
 Dental ceramic. International standard ISO 6872,
 2nd ed. Switzerland : Case Postale, 1995;56:6-8.
- 14. Ohyama T, Yoshinari M, Oda Y. Effects of cyclic loading on the strength of all-ceramic materials. Int J Prosthodont. 1999;12:28-37.
- White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J Prosthet Dent. 2005;94:125–31.
- 16. Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials. 2004;25:5045-52.
- Zeng K, Oden A, Rowcliffe D. Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont. 1998;11:183-9.
- Wakabayashi N, Anusavice KJ. Crack initiation modes in bilayered alumina/porcelain disks as a function of core/veneer thickness ratio and supporting substrate stiffness. J Dent Res. 2000;79: 1398-404.
- 19. Lawn BR, Deng Y, Lloyd IK, Janal MN, Rekow

ED, Thompson VP. Materials design of ceramicbased layer structures for crowns. J Dent Res. 2002;81:433-8.

- 20. Young WC. Roark's formulas for stress and strain. 6th ed. New York: McGraw-Hill. 1989.
- Isgro G, Wang H, Kleverlaan CJ, Feilzer AJ. The effects of thermal mismatch and fabrication procedures on the deflection of layered all– ceramic discs. Dent Mater. 2005;21:649–55.
- 22. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CAD-CAM produced all-ceramic dental crowns. Dent Mater. 2005;21:242-51.
- Hsueh CH, Luttrell CR, Becher PF. Analyses of multilayered dental ceramics subjected to biaxial flexure tests. Dent Mater. 2006;22:460-9.
- 24. Studart AR, Filser F, Kocher P, Luthy H, Gauckler LJ. Mechanical and fracture behavior of veneerframework composites for all-ceramic dental bridges. Dent Mater. 2007;23:115–23.
- Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater. 2005;21:984–91.
- Kim B, Zhang Y, Pines M, Thompson VP. Fracture of porcelain-veneered structures in fatigue. J Dent Res. 2007;86:142-6.
- Taskonak B, Mecholsky JJ Jr., Anusavice KJ. Residual stresses in bilayer dental ceramics. Biomaterials. 2005;26:3235-41.
- 28. Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent. 2006;96:154-64.
- 29. Yoshinari M, Derand T. Fracture strength of all-ceramic crowns. Int J Prosthodont. 1994;7: 329-38.

Biaxial flexural strength of zirconia ceramic with differences in core : veneer ratio

Prarom Salimee¹ D.D.S., Ph.D. Teera Thammawasi², D.D.S.

¹Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University ²Graduate student, Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University

Abstracts

Objective To investigate the biaxial flexural strength (BFS) and mode of fracture of zirconia ceramic with different thickness of core: veneer ratio.

Materials and methods Fifty disc specimens (15 mm. in diameter and 1.2 mm. in thickness) of zirconia ceramic were fabricated for 5 groups (n=10) according to core:veneer ratio; group 1 = 1:0 (core alone), group 2 = 2:1 (core 0.8 mm) group 3 = 1:1 (core 0.6 mm.), group 4 = 1:2 (core 0.4 mm.) and group 5 = 0:1 (veneer porcelain alone). All specimens were subjected to biaxial flexural test following ISO 6872: 1995 until failure occurred and calculated the BFS. All tests were carried out on the Instron 5566 with crosshead speed of 1.0 mm/min.

Results The means BFS \pm SD of group 1-5 were 921.48 \pm 106.86 MPa, 1009.49 \pm 98.72 MPa, 895.68 \pm 92.96 MPa, 768.08 \pm 73.17 MPa and 70.49 \pm 8.54 MPa, respectively. ANOVA and Tamhane test revealed that there was no significant difference among the BFS of group 1, group 2 and group 3 (p > 0.05) but the BFS of these groups were significantly higher than the BFS of group 4 and group 5 (p < 0.05).

Conclusion In case of specimen with 1.2 mm. in thickness, the difference of core and veneer ratio 1:0, 2:1 and 1:1 did not affect the BFS, but decreasing in thickness of core and veneer ratio to 1:2, the BFS of zirconia ceramic was significantly decreased. Delamination of core-veneer interface can be observed in all core-veneer specimens.

(CU Dent J. 2011;34:75-86)

Key words: Biaxial flexural strength; Core:veneer ratio; Zirconia ceramic