Biological evaluation of medical devices — Part 12: Sample preparation and reference materials The European Standard EN ISO 10993-12:2004 has the status of a British Standard ICS 11.100 ### National foreword This British Standard is the official English language version of EN ISO 10993-12:2004. It is identical with ISO 10993-12:2002. It supersedes BS EN ISO 10993-12:1997, which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee CH/194, Biological evaluation of medical devices, which has the responsibility to: - aid enquirers to understand the text; - present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed; - monitor related international and European developments and promulgate them in the UK. A list of organizations represented on this committee can be obtained on request to its secretary. #### **Cross-references** The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 8 December 2004 #### Summary of pages This document comprises a front cover, an inside front cover, the EN ISO title page, the EN ISO foreword page, the ISO title page, pages ii to vi, pages 1 to 17 and a back cover. The BSI copyright notice displayed in this document indicates when the document was last issued. #### Amendments issued since publication © BSI 8 December 2004 | Comments Copyright British Standards Institution Reproduced by IHS under license with BSI - Uncontrolled Copy No reproduction or networking permitted without license from IHS # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM ### EN ISO 10993-12 November 2004 ICS 11.100 Supersedes EN ISO 10993-12:1996 #### **English version** # Biological evaluation of medical devices - Part 12: Sample preparation and reference materials (ISO 10993-12:2002) Evaluation biologique des dispositifs médicaux - Partie 12: Préparation des échantillons et matériaux de référence (ISO 10993-12:2002) Biologische Beurteilung von Medizinprodukten - Teil 12: Probenvorbereitung und Referenzmaterialien (ISO 10993-12:2002) This European Standard was approved by CEN on 27 October 2004. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: rue de Stassart, 36 B-1050 Brussels © 2004 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN ISO 10993-12:2004: E #### **Foreword** The text of the International Standard from Technical Committee ISO/TC 194 "Biological evaluation of medical devices" of the International Organization for Standardization (ISO) has been taken over as a European Standard by Technical Committee CEN/TC 206 "Biocompatibility of medical and dental materials and devices", the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2005, and conflicting national standards shall be withdrawn at the latest by May 2005. This document supersedes EN ISO 10993-12:1996. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s). For relationship with EU Directive(s), see informative Annex ZB, which is an integral part of this document. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. #### **Endorsement notice** The text of ISO 10993-12:2002 has been approved by CEN as a European Standard, EN ISO 10993-12:2004, without any modifications. NOTE Normative references to International Standards are listed in annex ZA (normative). # INTERNATIONAL STANDARD ISO 10993-12 > Second edition 2002-12-15 Corrected version 2003-06-01 # Biological evaluation of medical devices — Part 12: Sample preparation and reference materials Évaluation biologique des dispositifs médicaux — Partie 12: Préparation des échantillons et matériaux de référence ### EN ISO 10993-12:2004 | Cont | Contents P | | |------------------------------------|---|-------------| | Forew | ivon | | | Introd | uction | vi | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Experimental controls | 3 | | 5
5.1
5.2 | General | 3 | | 6 | Use of RMs as experimental controls | 4 | | 7 | Test material selection | 4 | | 8 | Test sample and RM preparation | 4 | | 9 | Selection of representative portions from a device | 5 | | 10
10.1
10.2
10.3
10.4 | Preparation of extracts of samples General Containers for extraction Extraction conditions and methods Extraction conditions for hazard identification and risk estimation in exaggerated-use condition | 5
5
6 | | 11 | Records | | | Annex | A (informative) Experimental controls | 9 | | Annex | B (informative) General principles and practices of test material preparation and sample selection | 11 | | Annex | C (informative) Principles of test material extraction | 13 | | Bibliog | graphy | 15 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 10993-12 was prepared by Technical Committee ISO/TC 194, Biological evaluation of medical devices. This second edition cancels and replaces the first edition (ISO 10993-12:1996), which has been technically revised. ISO 10993 consists of the following parts, under the general title Biological evaluation of medical devices: - Part 1: Evaluation and testing - Part 2: Animal welfare requirements - Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity - Part 4: Selection of tests for interactions with blood - Part 5: Tests for in vitro cytotoxicity - Part 6: Tests for local effects after implantation - Part 7: Ethylene oxide sterilization residuals - Part 8: Selection and qualification of reference materials for biological tests - Part 9: Framework for identification and quantification of potential degradation products - Part 10: Tests for irritation and delayed-type hypersensitivity - Part 11: Tests for systemic toxicity - Part 12: Sample preparation and reference materials - Part 13: Identification and quantification of degradation products from polymeric medical devices - Part 14: Identification and quantification of degradation products from ceramics - Part 15: Identification and quantification of degradation products from metals and alloys - Part 16: Toxicokinetic study design for degradation products and leachables - Part 17: Establishment of allowable limits for leachable substances Future parts will deal with other relevant aspects of biological testing. This
corrected version of ISO 10993-12:2002 incorporates a correction in 10.3.4, in which a note clarifies use of other media in some countries. ### Introduction This part of ISO 10993 specifies methods of sample preparation and the selection of reference materials in the biological evaluation of medical devices. Because ISO 10993 describes many different biological assay systems, the individual parts should be consulted to ascertain if these recommendations are appropriate for specific test systems. Sample preparation methods should be appropriate for both the biological evaluation methods and the materials being evaluated. Each biological test method requires the selection of materials, extraction solvents and conditions. This part of ISO 10993 is based on existing national and international specifications, regulations and standards wherever possible. It is periodically reviewed and revised. # Biological evaluation of medical devices — ### Part 12: ## Sample preparation and reference materials #### 1 Scope This part of ISO 10993 specifies requirements and gives guidance on the procedures to be followed in the preparation of samples and the selection of reference materials for medical devices testing in biological systems in accordance with one or more parts of the ISO 10993 series. Specifically, this part of ISO 10993 addresses: - test material selection; - selection of representative portions from a device; - test sample preparation; - experimental controls; - selection of and requirements for reference materials; and - preparation of extracts. The applicability of this part of ISO 10993 to absorbable materials, materials that polymerize *in situ*, tissue-engineered medical products and materials of biological origin should be carefully evaluated. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 10993-1:1997, Biological evaluation of medical devices — Part 1: Evaluation and testing ISO 14971, Medical devices — Application of risk management to medical devices #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### accelerated extraction extraction that provides a measure of the hazard potential of the device or material using conditions that shorten the time for leaching of the substances into the medium - NOTE 1 Examples of accelerated extraction conditions are elevated temperature, agitation, changing medium, etc. - NOTE 2 Accelerated extraction will not result in a chemical change in the substances being extracted. #### EN ISO 10993-12:2004 #### 3.2 #### blank extraction medium not containing the test material, retained in a vessel identical to that which holds the test material and subjected to identical conditions to which the test material is subjected during its extraction The purpose of the blank is to evaluate possible confounding effects due to the extraction vessel, vehicle and NOTE extraction process. #### 3.3 #### certified reference material #### CRM reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure which establishes its traceability to an accurate realization of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence [ISO Guide 30] Standard Reference Material (SRM) is a trademark of the National Institute of Standards and Technology, Gaithersburg, MD, USA. #### 3.4 #### exaggerated extraction any extraction that is intended to result in a greater amount of a chemical constituent being released as compared to the amount generated under simulated-use conditions NOTE Exaggerated extraction is not intended to result in a chemical change of the material or the substances being extracted (see 10.3). #### 3.5 #### experimental control substance with well characterized responses, which is used in a specific test system to assist in evaluating whether the test system has responded in a reproducible and appropriate manner #### 3.6 liquid that results from extraction of test material or control #### 3.7 #### homogeneous property of a material and its relationship to a biological endpoint such that it is of uniform structure or composition to consistently render or not a specific biological response The reference material is said to be homogeneous if the biological response to a specific test is found to lie within the specified uncertainty limits of the test, irrespective of the batch or lot of material from which the test sample is removed. #### 3.8 #### negative control any well characterized material, which when tested by a specific procedure, demonstrates the suitability of the procedure to yield a reproducible, appropriately negative, non-reactive or minimal response in the test system In practice, negative controls include blanks, vehicles/solvents and reference materials. NOTE #### 3.9 #### positive control any well characterized material, which when evaluated by a specific test method, demonstrates the suitability of the test system to yield a reproducible, appropriately positive or reactive response in the test system #### 3.10 #### reference material #### RM material with one or more property values that are sufficiently reproducible and well established to enable use of the material or substance for the calibration of an apparatus, the assessment of a measurement method, or for the assignment of values to materials [ISO Guide 30] NOTE For the purposes of this part of ISO 10993, a reference material is any well characterized material or substance, which when tested by the procedure described, demonstrates the suitability of the procedure to yield a reproducible, predictable response. The response may be negative or positive. #### 3.11 #### simulated-use extraction extraction of a test material or sample with an appropriate medium and under conditions that simulate product use, for the purpose of evaluating its potential hazard to the patient or user during its routine clinical use #### 3.12 #### stability of property values ability of a material, when stored under specified conditions, to maintain a specific stated biological response, within specified limits, for a specific period of time [ISO Guide 30] #### 3.13 #### test material material, device, device portion, or component thereof subject to biological testing #### 3.14 #### test sample test material or extract subject to biological testing #### 4 Experimental controls Experimental controls shall be used in biological evaluations to validate a test procedure and/or to compare the results between materials. Depending on the biological test, negative controls, blanks and/or positive controls shall be used as is appropriate to the test. NOTE The same type of control may be applicable to different tests and may allow cross-reference to other established materials and test methods. Additional guidance on the selection of experimental controls is given in Annex A. Use of positive controls for *in vivo* testing may be affected by animal welfare regulations. #### 5 Reference materials #### 5.1 General Reference materials (RMs) are established by individual laboratories. The extent of chemical, physical and biological characterization is determined by the individual laboratory. Commercially available articles may be used as RMs. Certified Reference Materials (CRMs) are selected for their high purity, critical characteristics, suitability for the intended purpose and general availability. The critical chemical, physical and biological characteristics shall be determined by collaborative testing in three or more laboratories, and made available to the investigator by the distributor. NOTE It is desirable for users to obtain a commitment from suppliers of RMs or CRMs that these materials will be available to the user for at least 5 years. A second, but less desirable, option is for the source of the RM or CRM to publish an "open formulation" for the material, i.e. publication of the source materials and details of the processing needed to insure uniform batches of the RM. #### 5.2 Certification of RMs for biological safety testing - **5.2.1** Qualification of an RM is a procedure that establishes the numerical or qualitative value of the biological response of the material under test conditions specified, ensuring reproducibility of the response within and/or between laboratories. The range of biological responses associated with the material shall be established through laboratory tests. - **5.2.2** Suppliers of RMs certify the materials. The supplier determines the extent of chemical and physical characterization that is performed. The individual laboratories that use the RMs identify the biological characterization necessary to qualify an RM for a specific test or procedure. Commercially available materials may be used as RMs providing they are certified and qualified. - **5.2.3** Certification of an RM is a procedure that establishes the numerical or qualitative value of the biological response of the material under the specified test conditions. This process serves to validate the testing of the material for that particular response and results in the issuance of a certificate. The biological response of the material shall be established through interlaboratory tests. #### 6 Use of RMs as experimental controls **6.1** RMs or CRMs shall be used in biological tests as control materials to demonstrate the suitability of a procedure to yield a reproducible response, such as either positive and/or negative. Any material used in this way shall be characterized with each biological test procedure for which the use of the material is desired. A material characterized and then certified for one
reference test method or response, e.g. delayed-type hypersensitivity, shall not be used as an RM for another, e.g. cytotoxicity, without additional validation. Use of an RM facilitates the comparability of the response between laboratories and assists in assessing reproducibility of test performance within individual laboratories. For comparison of the biological response, it is desirable to use RMs having a range of responses, e.g. minimum, intermediate or severe. - **6.2** RMs used as experimental controls shall meet the established quality assurance procedures of the manufacturer and test laboratory. They shall be identified as to source, manufacturer, grad, and type. RMs are processed in accordance with Clause 8. - **6.3** When RMs are used as experimental controls, they shall be in the same material class as the test sample, i.e. polymer, ceramic, metal, colloid, etc. However, pure chemicals may be used as experimental controls for mechanistically based test procedures, e.g. genotoxicity and immune delayed-type hypersensitivity assays. #### 7 Test material selection - **7.1** Testing shall be performed on the final product, or representative samples from the final products, or materials processed in the same manner as the final product (see ISO 10993-1). - 7.2 The same test material selection procedure applies when an extract is required. #### 8 Test sample and RM preparation **8.1** Test samples and RMs shall be handled with care to prevent contamination. Any residues from the manufacturing processes shall be considered to be integral to the device, device portion or component. NOTE For additional guidance on preparation, see Annex B. - **8.1.1** Test samples from sterilized devices and RMs shall be handled aseptically if appropriate to the test procedure. - **8.1.2** Test samples from a device which is normally supplied non-sterile, but which requires sterilization prior to use, shall be sterilized by the method recommended by the manufacturer and handled aseptically if appropriate to the test procedure. - **8.1.3** If test samples are cleaned prior to sterilization, the influence of the cleaning process and cleaning agent shall be considered in the selection and handling of the test sample. - **8.2** If sterile test samples are required for the test procedure, the effect of the sterilization or resterilization process on the test sample and RMs shall be considered. - **8.3** When test samples and RMs need to be cut into pieces as described in 10.3.2.2, the influence of previously unexposed surfaces, e.g. lumens or cut surfaces, shall be considered. Tools used for cutting medical devices into representative portions for testing shall be clean to prevent contamination. #### 9 Selection of representative portions from a device - **9.1** If a device cannot be tested as a whole, each individual material in the final product shall be represented proportionally in the test sample. - **9.1.1** The test sample of devices with surface coatings shall include both coating material and the substrate. - **9.1.2** The test sample shall include a representative portion of the joint and/or seal if adhesives, radio frequency (RF) seals, or solvent seals are used in the manufacture of a portion of the device which contacts patients. - **9.2** Composite materials shall be tested as finished materials. - **9.3** When different materials are present in a single device, the potential for synergies and interactions shall be considered in the choice of test sample. - **9.4** The test sample shall be chosen to maximize the exposure of the test system to the components of a device that are known to have a potential for a biological response. #### 10 Preparation of extracts of samples #### 10.1 General If extracts of the device are required for a test procedure, the extraction media and conditions of extraction used shall be appropriate to the nature and use of the final product and to the purpose of the test, e.g. hazard identification, risk estimation, or risk assessment. The physicochemical properties of the device materials, leachable substances, or residues shall be considered when choosing the extraction conditions. NOTE For additional guidance on the extraction of samples, see Annex C. #### 10.2 Containers for extraction - **10.2.1** The extraction shall be performed in clean, chemically inert, closed containers with minimum headspace. - **10.2.2** To ensure that the extraction vessels do not adulterate the extract of the test materials, the extraction vessels shall be - a) borosilicate glass tubes with caps having an inert liner [e.g. poly(tetrafluoroethylene)], - b) other inert extraction vessels as required for specific materials and/or extraction procedures. #### 10.3 Extraction conditions and methods 10.3.1 Extraction conditions based on common practices are as follows (see also C.5): - a) (37 ± 1) °C for (24 ± 2) h; - b) (37 ± 1) °C for (72 ± 2) h; - c) (50 ± 2) °C for (72 ± 2) h; - d) (70 ± 2) °C for (24 ± 2) h; - e) (121 ± 2) °C for $(1 \pm 0,1)$ h. Extraction conditions described above that have been used to provide a measure of the hazard potential for risk estimation of the device or material are based on historical precedent. Other conditions that simulate the extraction that occurs during clinical use or that provide an adequate measure of the hazard potential may be used, but shall be described and justified. Extraction is a complex process influenced by time, temperature, surface-area-to-volume ratio, extraction medium and the phase equilibrium¹⁾ of the material. The effects of higher temperatures or other conditions on extraction kinetics and the identity of the extractant(s) shall be considered carefully if accelerated or exaggerated extraction is used. For example, two possibilities exist when elevated temperatures are used: - the energy of the increased temperature can cause increased crosslinking and/or polymerization of the polymer, and therefore decrease the amount of free monomer that is available to migrate from the polymer; - the increased temperature can produce degradant materials that are not typically found in the finished device under use conditions. **10.3.2** The standard surface area can be used to determine the volume of extract needed. This area includes the combined area of both sides of the sample and excludes indeterminate surface irregularities. When surface area cannot be determined due to the configuration of the sample, a mass/volume of extracting fluid shall be used. See Table 1. , ¹⁾ The phase equilibrium of a material during the extraction controls the relative amounts of amorphous and crystalline phases present. For the amorphous phase, the glass transition temperature, $T_{\rm g}$, dictates the polymer chain mobility and the diffusion rate in the phase. Usually, the diffusion rate is considerably higher above the $T_{\rm g}$ compared with that below. The diffusion rate is lowest in the crystalline phase. The extraction conditions should not alter the phase equilibrium of the material. Phase alteration can affect the amount and type of extractables. Table 1 — Standard surface areas and extract liquid volumes | Thickness
mm | Extraction ratio (surface area or mass/volume) | Forms of material | |---|--|--| | | ± 10 % | | | < 0,5 | 6 cm²/ml | film, sheet, tubing wall | | 0,5 to 1,0 | 3 cm ² /ml | tubing wall, slab, small molded items | | > 1,0 | 1,25 cm ² /ml | larger molded item(s) | | Irregularly shaped solid devices | 0,2 g/ml | powder, pellets, foam, non-absorbent,
moulded items | | Irregularly shaped porous devices (low-density materials) | 0,1 g/ml | membranes | NOTE While there are no standardized methods available at present for testing absorbents and hydrocolloids, the following is a suggested protocol: Determine the "absorption capacity" of the material, i.e. the amount of extract liquid absorbed per gram of the material. The test sample shall be 0,1 g/ml beyond the absorptive capacity of the material. - **10.3.2.1** Other surface-area-to-volume extraction ratios, e.g. those related to evaluation of porous materials, can be used if they simulate the conditions during clinical use or result in a measure of the hazard potential. - **10.3.2.2** Materials shall be cut into small pieces before extraction to enhance submersion in the extract media, except when otherwise inappropriate (see, for example, 10.3.3). For polymers, pieces approximately $10 \text{ mm} \times 50 \text{ mm}$ or $5 \text{ mm} \times 25 \text{ mm}$ are appropriate. - **10.3.3** Elastomers, coated materials, composites, laminates, etc., shall be tested intact, whenever possible, because of potential differences in extraction characteristics between the intact and cut surfaces. - NOTE As a result of manufacturing processes, many elastomers can have surface properties that differ from those of the bulk material. - **10.3.4** Extraction using both polar and non-polar solvents shall be performed. Examples of extraction media are: - a) polar medium: water, physiological saline; culture media without serum; - b) non-polar medium: freshly refined vegetable oil (e.g. cottonseed or sesame oil) of quality defined in various pharmacopoeia; - c) additional media: ethanol/water, ethanol/saline, polyethylene glycol 400 (diluted to a physiological osmotic pressure), dimethyl sulfoxide and culture media with serum. - NOTE In some countries other media, having known effects on the material and the biological system, and appropriate to the nature and use of the device or the methods for hazard identification, may be considered as acceptable alternatives. - **10.3.5** Extractions shall be performed with agitation. When extraction under static conditions is considered to be appropriate, the method shall be justified, specified
and reported. - **10.3.6** Liquid extracts shall, if possible, be used immediately after preparation to prevent sorption onto the extraction container or other changes in composition. If an extract is stored longer than 24 h, then the stability and homogeneity of the extract under the conditions of storage shall be verified. - **10.3.7** Extract pH shall not be adjusted unless a rationale is provided. - 10.3.8 The extract shall not routinely be processed by filtration, centrifugation or other methods to remove suspended particulates. However, if such processing is necessary, the rationale shall be documented. - 10.3.9 For hazard identification exaggerated extraction conditions shall be considered to increase the exposure dose of leachables. The solvent and conditions of extraction shall be selected on the basis of physicochemical properties of the material and/or predicted low molecular mass chemicals that might be extracted. - 10.3.10 Any solvents used in the extraction of a polymeric material or device shall not cause dissolution of the polymer formulation. No more than a slight softening of the polymeric material shall occur in the presence of the volatile solvent (e.g. less than 10 % dissolution). The solvent shall be removed (prior to use in a bioassay) to the extent that any residues do not adversely affect the biological assay (e.g. cause protein denaturation or skin irritation). #### 10.4 Extraction conditions for hazard identification and risk estimation in exaggerated-use condition - Hazards that arise from changes in the manufacturing process or insufficient control of the manufacturing process shall be considered in the design and preparation of samples for test and preparation of extracts of those devices, in accordance with ISO 14971. Particular attention shall be given to residues, e.g. trace elements and cleaning and disinfection agents, of those manufacturing processes. - **10.4.2** Where the toxic potential is shown to be within the requirement for a product tested by exaggerated extraction, there shall be no need to further challenge the device by simulated-use extraction. - **10.4.3** The test samples for materials that cure *in situ* (e.g. cements, adhesives and pre-polymer mixtures) shall represent the curing point at which the material is placed in situ and the maximum curing time during use in situ (i.e. simulate the minimum and maximum cures during clinical use). Where extracts are used in the test methods for evaluation of materials that cure in situ, initiation of the extraction shall occur from the point in the cure at which the material is placed in situ. For test methods that use these materials directly, e.g. direct-contact or agar overlay cytotoxicity, implantation, some genotoxicity tests, and direct-contact haemolysis, the material shall be used as in clinical use, with in situ cure in the test system. Modification of the clinical delivery system may be appropriate, so that the designated dimensions or mass of the material is delivered for testing. #### 11 Records Documentation of the sample and its preparation shall include, but not be limited to: - type and, if known, composition of material, source of material, device, device portion or component; - NOTE A written description, drawing, photograph or other methods can achieve all or part of this requirement. - lot or batch number, where appropriate: - description of processing, cleaning or sterilization treatments, if appropriate; and c) - extraction techniques, as appropriate, including documentation of extraction medium, extraction ratios, the conditions for extraction, means of agitation, as well as any deviations from the conditions specified in this part of ISO 10993, such as filtration of the extract or extraction media. # Annex A (informative) ### **Experimental controls** **A.1** The materials listed in the following paragraphs may meet the criteria for an appropriate experimental control in selected tests. It is the responsibility of the investigator to make the appropriate choices (see also Table A.1). Table A.1 — Summary of available RMs and controls for those tests in ISO 10993 which do not require specific RMs or controls | Test | Positive control ^a | Negative control ^a | RM ^a | |--------------------------|-------------------------------|-------------------------------|-----------------| | Implantation | PVC-org. Sn | PE | | | | SPU-ZDEC | silicone | | | | natural rubber latex | alumina | | | | | stainless steel | | | Cytotoxicity | PVC-org. Sn | PE | | | | SPU-ZDEC | | | | | SPU-ZBEC | | | | | natural rubber latex | | | | | Polyurethane | | | | Dia ad a amora atibility | | | PVC 7506 | | Blood compatibility | | | PUR 2541 | - **A.2** Materials that have been used as negative controls or RMs are, for example, high-density polyethylene^{2) 3) 4) 5), low-density polyethylene⁶⁾, silica-free polydimethylsiloxane^{7) 8)}, polyvinylchloride⁹⁾, polyetherurethane¹⁰⁾, polypropylene¹¹⁾, aluminium oxide ceramic rods, stainless steel and commercially pure (cp) titanium alloys.} - **A.3** Materials that have been used as positive controls are, for example: polyvinylchloride containing organotin additives¹²), segmented polyurethane films containing zinc diethyl-¹³) or dibutyl-dithio-carbamate¹⁵), certain latex formulations, solutions of zinc salts, and copper. Substances that have been used as positive controls for extract samples are dilutions of phenol and water. - 2) High-density polyethylene (Negative Control Plastic RS) can be obtained from the US Pharmacopeia (Rockville, MD USA). This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 3) HDPE film: RM-C Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 4) HDPE sheet: RM-D Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 5) HDPE rod: RM-E Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 6) PE 140 tubing: AG, D-8673 Rehau, Germany. PE film is available from Hoechst AG, D-6230 Frankfurt 80, Germany. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 7) Biomaterials Program, Devices and Technology Branch, National Heart, Lung and Blood Institute, NIH, 312 Federal Building, 7550 Wisconsin Ave., Bethesda, MD 20892, USA. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 8) SIK 8363 tubing: Rehau AG, D-8673 Rehau, Germany. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 9) PVC 7506 and PVC 7536 tubing: Rehau AG, D-8673 Rehau, Germany. PVC-DEHP and PVC-TEHTM film is available from Hoechst AG, D-6230 Frankfurt 80, Germany. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 10) PUR 2541 tubing: Rehau AG, D-8673 Rehau, Germany. PU film is available from Frontline Filmblasning, S-60003 Norrkoping, Sweden. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 11) PP 146 tubing is available from Rehau AG, D-8673 Rehau, Germany. PP film is available from Hoechst AG, D-6230 Frankfurt 80, Germany. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 12) Positive Control Material, code 499-300-000: Portex Limited [same as Positive control RS which can be obtained from the US Pharmacopeia, Rockville, MD, 20852, USA]. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 13) Polyurethane film ZDEC: RM-A; Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 14) Polyurethane rod ZDEC: RM-F; Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. - 15) Polyurethane film ZDEC: RM-B; Hatano Research Institute/Food and Drug Safety Center, 729-5 Ochiai Hadano, Kanagawa 257-8523 Japan; TEL 81-463-82-4751, FAX: 81-463-82-9627, E-mail: RM.Office@fdsc.or.jp. This information is given for the convenience of the user of this part of ISO 10993 and does not constitute an endorsement by ISO of the product. #### Annex B (informative) # General principles and practices of test material preparation and sample selection The material used in the biological assay shall be representative of the composition and surface characteristics of the
final product and of the processes used in its manufacture. See 7.1 and ISO 10993-1:1997, 5.1 a). Documentation of the composition of plastic and rubber materials shall include identification of the resin, polymer and any additives. The formulation description shall specify the history of the material, e.g. information on thermal processing, and whether it is virgin or regrind and, if regrind, the specification for the maximum allowable regrind. Materials that may be resterilized by the same or alternative methods shall be tested after treatment by the multiple sterilizations. For example, a material that is sterilized by radiation and resterilized by ethylene oxide shall be tested after - a) irradiation, and - b) irradiation plus ethylene oxide. If a "worst-case" exposure can be identified with appropriate justification, testing may be performed after exposure to this treatment. Ideally, all biological tests which use a material cut from a device, a device component itself as the test material, or extract prepared from either, shall be performed with the surface of the material exposed to the test systems' cellular/biological environment. An alternative method to cutting the surface is fabrication of miniatures of the device using the same process (extrusion, dipping, etc.), temperatures, time, atmosphere, release agents, annealing, curing, cleaning, sterilization, etc., processes used in the manufacture of the device. This assists in evaluating any effects related to surface area, surface characteristics, concentration of leachables and the material's surface and shape. Metals used in biological tests shall be from the same stock material used to fabricate the device and using the same machining, grinding, polishing, cleaning, passivation, surface treatment and sterilization used in the manufacture of the final product. Ceramic materials used in biological tests shall be manufactured from the same powder stock using the same casting, investing, moulding, sintering, surface finishing and sterilization processes used to manufacture the device. Bioprosthetic, i.e. animal-tissue-derived, materials shall be tested after they have been preserved under the manufacturer's maximum and minimum allowable fixation times to allow for varying penetration of the fixative. Instead of extraction of metallic materials followed by application of the extract to the test systems, testing the solutions of various concentrations of the appropriate salt of the specific metal(s) identified in the device shall be considered for identifying hazard of the specific metal ion(s) and to know its highest non-effect level(s). NOTE This principle is also applicable for organic materials when chemicals in the device are identified. Extraction conditions for implant materials that may cause particle generation *in vivo* during clinical use shall be considered in the design of tests on the material. The effect of extraction procedures shall be considered in the design of tests of a material if particulates are generated by the extraction conditions. #### EN ISO 10993-12:2004 The amount of material and surface area thereof shall be appropriate to the biological and physical constraints of the test system. In practice, the use of a standard sample size for a specific assay is recommended. The attention of the users of this part of ISO 10993 is directed to the discussion of "proper use" and "misuse" of CRMs in the introduction to ISO Guide 33. This discussion points out areas of both potential under- and over-utilization of RMs and CRMs. Users of this part of ISO 10993 shall also note that the use of calibration materials to evaluate the biological response of materials under investigation within a single laboratory is acceptable. # Annex C (informative) ### Principles of test material extraction WARNING — Application of ISO 10993 test methods to device materials comprising proteins shall be made with great care. **C.1** The purpose of extraction of a medical device is to provide a suitable test sample for determining the biological reactivity of any leachables in the biological system, to demonstrate the hazard potential (hazard identification) of the leachable and for use in conducting human health risk assessments of the leachable. If extracts of the device are prepared, the medium and conditions of extraction used shall be appropriate to the nature and use of the final product as well as to the predictability (such as test purpose, rationale, sensitivity, etc.) of the test method. Extraction conditions and application of the extract to test systems, therefore, shall ideally reflect not only actual in-use conditions of the products but also the purpose and predictability of the tests. Biological tests are carried out in order to identify hazards and estimate risks of the hazards in exaggerated-use and/or in actual-use conditions. Extractions differ for various test purposes: - a) exaggerated extraction is appropriate for hazard identification, and - b) simulated-use extraction is applicable for generation of a safety factor for use in human health risk assessments. - **C.2** This part of ISO 10993 assumes that the amount of extractable substance(s) is related to the period of extraction, the temperature, the ratio of surface-area-of-material to volume-of-extractant and the nature of the extractant. - **C.3** The period of extraction shall be sufficient to maximize the amount of material extracted. In practice, use of these standard conditions of time and temperature for extraction are recommended in lieu of other unvalidated or non-standard conditions. - **C.4** An alternative practice is repeated extraction followed by concentration to obtain sufficient extractable substance(s). This practice is applicable for the purposes of hazard identification. - **C.5** Extraction temperatures can vary for the different materials to be tested. Extraction shall not initiate significant degradation of the material. The extraction temperature is dependent upon the physicochemical characteristics of the device material(s). The extraction temperature chosen for polymers, for example, shall be below the glass transition temperature. If the glass transition temperature is below the use temperature, the extraction temperature shall be below the melting temperature. Recommended conditions are given in 10.3.1. The following examples are presented to illustrate the interpretation of 10.3.1. - EXAMPLE 1 Materials that have a melting or softening point less than (121 ± 2) °C are extracted at a standard temperature less than the melting point (e.g. very low density polyethylene). - EXAMPLE 2 Materials that undergo hydrolysis are extracted at a temperature that minimizes the amount of hydrolysis (e.g. polyamides are extracted at (50 ± 2) °C). - EXAMPLE 3 Materials that are processed by steam sterilization and contain a liquid during storage are extracted at (121 ± 2) °C (e.g. prefilled dialysers). - EXAMPLE 4 Materials that are used only at body temperature are extracted at temperatures which provide the maximum leachables without material degradation [e.g. collagen shall be extracted at (37 ± 1) °C, whereas ceramic implants may be extracted at (121 ± 2) °C]. #### EN ISO 10993-12:2004 **EXAMPLE 5** Extraction at (37 ± 1) °C for (24 ± 2) h [see 10.3.1 a)] in saline alone is rarely acceptable for implantable devices. - The ratio of the surface area of the device to the volume of extractant or solvent shall be sufficient to **C.6** - attain the maximum amount of extractable substance(s) in an appropriate dosage volume for biological testing (i.e. dosage volume within physiological limits) or chemical analysis, - demonstrate the hazard potential for the use of the device in humans, b) - cover the material in the solvent volume. c) In practice, the use of a standard area and solvent volume in accordance with 10.3.2 is recommended in lieu of device-specific parameters. Some test methods require concentration of extracts to increase the sensitivity of the test. NOTE Concentration of extracts can result in loss of volatile materials such as ethylene oxide. - The solvent(s) selected as extractants shall - be suitable for use in the specific biological test systems, a) - simulate the extraction which occurs during clinical use of the device, and/or - maximize the amount of extract. c) In practice, the use of standard polar and non-polar solvents as specified in 10.3.5 is recommended in lieu of device-specific solvents. Standardization of the parameters given in Clauses C.5 and C.6 permits the use of data obtained from biological tests of medical devices for other types of application, e.g. for the estimation of risk and the development of standardized databases. ### **Bibliography** - [1] ISO Guide 30, Terms and definitions used in connection with reference materials - [2] ISO Guide 31, Reference materials Contents of certificates and labels - [3] ISO Guide 33, Uses of certified reference materials - [4] ISO Guide 35, Certification of reference materials General and statistical principles - [5] ISO 10993-3, Biological evaluation of medical devices Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity - [6] ISO 10993-4, Biological evaluation of medical devices Part 4: Selection of tests for interactions with blood - [7] ISO 10993-5, Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity - [8] ISO 10993-6, Biological evaluation of medical devices Part 6: Tests for local effects after implantation - [9] ISO 10993-7, Biological evaluation of medical devices Part 7: Ethylene oxide sterilization residuals - [10] ISO 10993-10, Biological evaluation of medical devices Part 10: Tests for irritation and delayed-type hypersensitivity - [11] ISO 10993-11, Biological evaluation of medical devices Part 11: Tests for systemic toxicity - [12] ISO 10993-18, Biological evaluation of medical devices Part 18: Chemical
characterization of materials - [13] BRAYBROOK, J.H. and MACKAY, G.A. Supercritical fluid extraction of polymer additives for use in biocompatibility testing. *Polymer Internat.*, **27** (1992), pp. 157-164 - [14] NFS 90701, 1988, Medico-Surgical Equipment, Biocompatibility of Materials and Medical Devices, Methods for Extraction - [15] UPHILL, P.F. and CHRISTOPHER, D.H. Developing a Positive Control for Cytotoxicity Testing of Medical Device Materials: *Medical Device Technology*, Nov./Dec. (1990), pp. 24-27 - [16] United States Pharmacopoeia/National Formulary; <88> Biological Reactivity Tests, In Vivo - [17] Guidelines for Basic Biological Tests of Medical Materials and Devices; MWH Notification: Yakuki No. 99 # Annex ZA (normative) # Normative references to international publications with their relevant European publications This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments). NOTE Where an International Publication has been modified by common modifications, indicated by (mod.), the relevant EN/HD applies. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | <u>EN</u> | <u>Year</u> | |--------------------|-------------|---|--------------|-------------| | ISO 14971 | 2000 | Medical devices – Application of risk management to medical devices | EN ISO 14971 | 2000 | # Annex ZB (Informative) # Clauses of this International Standard addressing essential requirements or other provisions of EU Directives This European standard has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association and supports essential requirements of EU 93/42/EEC of 14 June 1993 concerning medical devices. WARNING : Other requirements and other EU Directives <u>may</u> be applicable to the product(s) falling within the scope of this standard. The following clauses of this standard are likely to support requirements of UE Directive 93/42/EEC of 14 June 1993 concerning medical devices Compliance with the clauses of this standard provides one means of conforming with the specific essential requirements of the Directive concerned and associated EFTA regulations. Table ZB.1 — Correspondence between this European Standard and EU Directives | Clauses/subclauses of this
International Standard | Essential requirements (ERs) of Directive 93/42/EEC | Qualifying remarks/Notes | |--|---|---| | 4, 5, 6, 7, 8, 9, 10, 11 | 7.1, 7.2, 7.3, 7.5 | EN ISO 10993-12 'Biological evaluation of medical devices – Part 12: Sample preparation and reference materials' should be used in conjunction with th tests indicated in EN ISO 10993-1 'Biological evaluation of medical devices – Part 1: Evaluation and testing'. | ### **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001. Email: membership@bsi-global.com. Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline. Further information about BSI is available on the BSI website at http://www.bsi-global.com. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com. BSI 389 Chiswick High Road London W4 4AL